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Gravitational waves sources

So far the LVK has detected 90 compact binary coalescence events.

Credit: LIGO-Virgo/Aaron Geller/Northwestern

Credit: NASA

Another possible source of gravitational waves (GWs) could be rotating
neutron stars (not yet detected).
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Introduction to pulsars

Credit: Lorimer & Kramer, Handbook of Pulsar Astronomy

Rotating neutron stars emitting
an electromagnetic (EM) beam.

Detectable if the EM beam
swipes Earth’s line of view
(“lighthouse” effect).

Over 3000 known pulsars.

EM observations can’t probe the
inner composition of these
extreme objects → GWs could!
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Continuous waves (CWs)

Asymmetries in the rotating neutron star are possible sources for GW
emission.

Credit: Australian National University. Center for
Gravitational Astrophysics

h(t;λ,A) CW signal with parameters:

λ = {α, β, f , ḟ , f̈ ...} Doppler modulation
due to Earth’s motion, source
frequency, spindown...

A = {h0, cos ι, ψ, ϕ0} signal amplitude,
source orientation.
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Glitching pulsars

Credit: Ashton et al. 2019

Rotational frequency
suddenly increases!

Pulsars lose energy due to EM and
GW emission.

Some young pulsars undergo “glitches”,
i.e. a spin-up event.

Energy not created out of nothing,
rather need to look into the depths of
the neutron star → mostly unknown!

Two-fluid model: anomaly could be due
to angular momentum transfer from an
interior superfluid component, and GWs
could be produced from the freed
energy.
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Transient continuous waves

Similar to CW standard model, but in addition to the phase and amplitude
parameters:

λ = {α, β, f , ḟ , f̈ ...}
A = {h0, cos ι, ψ, ϕ0}

we consider a set of transient parameters:

T = {τ, t0}

Transient continuous wave model (Prix et al. 2011)

h(t;λ,A, T ) = ω(t; T )h(t;λ,A)
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How do we detect these signals?

1. Signal vs noise hypotheses framework (Prix et al. 2011){
HG : x(t) = n(t) data x contains only Gaussian noise

HtS : x(t) = n(t) + h(t;λ,A, T ) data x contains tCW signal too!

2. Likelihood ratio
P(x |HtS;λ,A,T )

P(x |HG)

3. F -stat map

maximize the likelihood
ratio over A and obtain:
Fmn = F(λ, t0m, τm)

4. Detection statistic
for tCWs

For each λ, either:

maximize over T
→ maxT F(x ;λ, T )

marginalize over T
→ log10 BtS/G
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F -stat atoms

In this framework, the detection statistic for
tCWs comes from the F-stat. Using Short
Fourier Transforms (SFTs) as the building
blocks of x(t), F-stat coherently sums up
the power along the correctly
Doppler-demodulated track with the
antenna-pattern weights.
The inputs to its practical implementation
are called F-stat “atoms”:

F -stat atoms

FXα
a,b , ⟨a2Xα⟩t , ⟨b2Xα⟩t , ⟨aXαbXα⟩t

7 numbers for each SFT (typically 1800s).

where Xα denotes an SFT of detector X , ⟨a2Xα⟩t , ⟨b2Xα⟩t , are the noise-weighted

antenna-pattern functions and FXα
a,b are the projections of the normalized data on the complex

basis {a,b}.
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Search methods: matched filtering

1 Set up a template grid λi covering
parameter space of interest.

2 Evaluate a statistic (maxF or
log10 BtS/G) on each template.

3 Highest statistic over templates →
possible candidates of tCWs.
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Previous searches have covered a
parameter space λ, as given by
ephemerides uncertainties, and T
limited to (Modafferi et al. 2021):
τ ∈ [3600 s, 120 days]

t0 ∈ [Tglitch ± 1 day]

ω(t; T ) = rectangular

Searches limited in T because of
the computation of partial sums
corresponding to different
combinations of T = {t0, τ} →
very expensive!

Machine learning could help us.
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tCWs searches: O3 results

10−22

10−23

10−24

10−25

10−26

h
9
5

0
J0534+2200 glitch 1 J0908-4913 glitch 1 J1105-6107 glitch 3

10−22

10−23

10−24

10−25

10−26

h
9
5

0

J1813-1749 glitch 1 J1826-1334 glitch 1 J0537-6910 glitch 5

1 10 100
τ [days]

10−22

10−23

10−24

10−25

10−26

h
9
5

0

J0537-6910 glitch 6

1 10 100
τ [days]

J0537-6910 glitch 7

1 10 100
τ [days]

J0537-6910 glitch 8

pending

The LIGO Collaboration, the Virgo Collaboration and the KAGRA Collaboration, arXiv:2112.10990

Indirect energy upper limits (red line): h0 ≤ 1
d

√
5G
2c3

Iz
τ
|∆f |
f

l.modafferi@uib.es (UIB) G2Net WG1 meeting 10 / 22



Convolutional Neural Networks (CNNs)

Deep learning algorithm that can pick up patterns from an input.

Great for image recognition.

Make use of convolution kernels or filters that slide along input
features and provide translation equivariant responses known as
feature maps.
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F -stat atoms as inputs of CNN

If the 7 per-timestamp F-stat atom vectors ∼ pixels of an image, we
can feed them as input to a CNN!

Output: probability of belonging to signal/noise category.

Threshold set on output probability by fixing false-alarm probability
pFA.

First model: simple design made up of 3 stacks of convolutional + MaxPooling
layer, we then flatten the output and add 2 fully-connected layers, where the last
outputs the detection statistic.
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Exploring different outputs: regression vs classification

The output of a classification algorithm is usually an ad-hoc created
detection statistic d ∈ [0, 1].

A threshold is set on d to distinguish between noise/signal output.

A different approach: use regression to predict a continuous target,
e.g signal-to-noise ratio (SNR).

SNR would label how strong the signal in the input is.

Set a threshold on SNR, e.g. fixing pFA.

For our first setup1 we use:

Testing set:

105 Noise samples

104 Signal samples

Training set:

2× 104 Noise samples

2× 104 Signal samples

1Special thanks to Artemisa, computing resources located here in Valencia!
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How do we characterize the performance of the CNN?

1 First define the search setup (parameter space size, noise/signal
distributions...).

2 Compare the CNN to matched filtering performances of previous
searches → test set of the CNN close to real search outputs.

3 The CNN model gets as good as its training set: will be defined
based on the data we want to target.

Testing set:

Noise samples →
determines how deep pFA
can go.

Signal samples →
determines resolution of
pdet.
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Early results

Using only Gaussian noise + simulated
injections.

Performance holds when testing different
sky positions and data with realistic gaps.

False dismissal rate ∼ 12% at pFA = 0.01.

Duration of injected signal τ as a function of SNR.
Red crosses are the signals that haven’t been found

by the CNN.

Not the best we can do...

Let’s try a different training
strategy.
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Curriculum learning (CL)

CL is a training strategy consisting of training on datasets of
gradually increasing difficulty (Bengio et al. 2009).

Previous studies have used CL on GW data (López et al. 2021, Baltus et al.

2021).

Difficulty criterion: SNR → first train on high SNR, then on low SNR
training data.
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Early results - with curriculum learning

False dismissal rate at
pFA = 0.01: from 12%
(standalone model) → 7%
(curriculum learning).

Next steps

Fine-tune hyperparameters to
minimize loss.

Use real data.
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Conclusions

Machine learning represents a complementary tool for traditional
matched filtering techniques.

Will test on exponential window function, which was prohibitive in
traditional searches.

Our model currently allows for flexible amplitude evolution.

We here do not allow for f
variation beyond standard
spin-down model.

→ future project would use
directly detector SFT data
as input to allow for more
flexible f variation.
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Bonus slides
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Theory of pulsar glitches: two-fluid model

Credit: NASA’s Goddard Space Flight
Center/Conceptual Image Lab

Observed pulses with angular velocity Ω,
associated to NS magnetic field and which
gradually decreases.

Interior neutrons are superfluid, forming an
independent component that rotates at
angular velocity ΩS .

Weak coupling between the two
components → growing “lag”
∆Ω = ΩS − Ω .

When lag reaches a critical value, some sort
of instability occurs.

Transfer of angular momentum from
superfluid to normal fluid → spin-up.

Change in quadrupole moment can cause
GW emission.

l.modafferi@uib.es (UIB) G2Net WG1 meeting 21 / 22



Exponential vs Rectangular windows
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