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Older and newer attempts
Juanelo Torriano alias Gianello della 
Torre, (XVI century) a craftsman from 
Cremona, built for Emperor Charles V a 
mechanical young lady who was able to 
walk and play music by picking the strings 
of a real lute.

Hiroshi Ishiguro, early XXI century 
Director of the Intelligent Robotics Laboratory, part of the Department 
of Adaptive Machine Systems at Osaka University, Japan
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the success stories

DARPA (American Defense Advanced Research Projects Agency) challenges have demonstrated 
how current robots are becoming more accurate, fast and dexterous in structured and 

unstructured environments. 
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Not everything worked as expected!
the current approach shows some limitations

On the other hand the debriefing of DARPA DRC shows clearly that humanoid robots are still far 
from the required level of capabilities in fact many metrics, such as time-to-completion, 

are highly application or task specific.

According to H.Yanco a minimum of 9 people were needed to 
teleoperate latest DRC’s robots!!!  



The marvellous progress of Robotics and AI…'Look
Ma, No Hands' syndrome?



Big Questions lie in front of us!



Two views of intelligence

classical: 
cognition as computation

embodiment: 
cognition emergent from sensory-
motor and interaction processes

PARADIGM CLASHES 



Comparison and ranking
Soft%Robotics:%a%working%definition

Variable%impedance%actuators%and%
stiffness%control

∗ Actuators%with%variable%impedance%
∗ Compliance/impedance%control%
∗ Highly%flexible%(hyperBredundant%or%

continuum)%robots

Use%of%soft%materials%in%robotics
∗ Robots%made%of%soft%materials%that%undergo%

high%deformations%in%interaction%
∗ Soft%actuators%and%soft%components%
∗ Control%partially%embedded%in%the%robot%

morphology%and%mechanical%properties

IEEE#Robotics#and#Automation#Magazine,% 
Special%Issue%on%Soft%Robotics,%2008%

A.%AlbuBSchaffer%et%al.%(Ed.s)

Kim%S.,%Laschi%C.,%and%Trimmer%B.%(2013)%Soft%robotics:%a%bioinspired%evolution%in%
robotics,%Trends#in#Biotechnology,%April%2013.%
Laschi%C.%and%Cianchetti%M.%(2014)%“Soft%Robotics:%new%perspectives%for%robot%
bodyware%and%control”%Frontiers#in#Bioengineering#and#Biotechnology,%2(3)

PARADIGM CLASHES 



Why it matters



Why it matters



A comparison



Go: Hong Kong, 2017



A comparison
Chess and GO are ‘perfect information games’

They always have an optimal value function which determines, under perfect game 
assumptions by all players, the outcome of the game from any initial state s. 

The recursion tree in such games will include roughly bd moves

• Chess: b » 35, d » 80 

• Go:       b » 250, d » 150

Interestingly the developers of AlphaGo have implemented an exhaustive testing and
evaluation schema to compare and refine different gaming policies by mixing Montecarlo
Simulations, Machine learning and guided sampling techniques.



Remarks

• In embodied AI (aka intelligent robotics!) deterministic
approaches are practically impossible to implement -> No 
‘perfect information games’

• We are very much likely still far from what we have to cope
with for a robot operating in the real world, but it can be 
seen as a better approximation than Chess….and other
proposed before.

Silver, D. et al. , Mastering the game of Go with deep neural networks and tree search, 
Nature 529, 484–489, 2016



ET
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Multisensory Fusion in Robotics
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Giancarlo Cella
INFN sez. Pisa
3rd ILIAS Annual meeting
Gran Sasso INFN National Lab
February 28-March 3, 2006
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Newtonian Noise (a naïve view))
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Lower freqs = more turns 

Newtonian Noise (a naïve view))



Netwonian Noise
A naïve view

Main Issue: Rayleigh waves (and lacking knowledge of underground mass distribution)

Problem: model underground and surface mass distribution and land motion
(same issue with the atmosphere) to characterize and predict Rayleigh waves



Other sources of noise:
‘Environmental’
i.e.
• Acoustic
• EM
• Others...



Multisensory Data Fusion in Robotics

Multisensor data fusion is the process of combining observations from a number of
different sensors to provide a robust and complete description of an environment or
process of interest.

Data fusion finds wide application in many areas of robotics such as object
recognition, environment mapping, and localisation.

From: H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. Khatib (eds.) Springer Handbook of 
Robotics, 2008



Multisensory Data Fusion in Robotics
Principles
It’s essentially an application of Bayes’ rule:

assuming conditional independence:

We get the multisensory expression:

and its recursive form:



Multisensory Data Fusion in Robotics
Methods

• Bayes’ Rule
• Probabilistic Grids
• The Kalman Filter (plus Extended Kalman Filters, Information Filters, etc.)
• Sequential Monte Carlo Methods
• Alternatives to Probability
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H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. 
Khatib (eds.) Springer Handbook of 
Robotics, 2008
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H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. 
Khatib (eds.) Springer Handbook of 
Robotics, 2008



Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion
Decentralised data fusion (DDF) methods were initially motivated by the insight that the information or canonical form of the conventional Kalman filter data
fusion algorithm could be implemented by simply adding information contributions from observations. As these (vector and matrix) additions are
commutative, the update or data fusion process can be optimally distributed amongst a network of sensors-

The sensor is modelled directly in the form of a likelihood function. Once instantiated with an observation, the likelihood function is input to a local fusion loop
which implements a local form of the Bayesian time and observation update. Network nodes accumulate probabilistic information from observation or
communication and exchange mutual information (information gain) with other nodes in the network. This mutual information is transmitted to and
assimilated by other nodes in the network in an ad-hoc manner. The result is that all nodes in the network obtain a single integrated posterior probability
based all node observations.

The ANSER II system consists of a pair of autonomous air vehicles equipped with infra-red and visual sensors, a pair of unmanned ground vehicles equipped
with visual and radar sensors, and additional information provided by geometric and hyper-spectral data bases, along with information input by human
operatives. The likelihood functions for singlesensor features are obtained through a semi-supervised machine learning method. The resulting
probabilities are modeled in the form of a mixture of Gaussians. Each platform then maintains a bank of decentralised, non-Gaussian Bayesian filters for the
observed features, and transmits this information to all other platforms. The net result is that each platform maintains a complete map of all features
observed by all nodes in the network. Multiple observations of the same feature, possibly by different platforms, results in an increasingly accurate estimate
of the feature location for all nodes.
The ANSER II system demonstrates a number of general principles in Bayesian data fusion methods.

Specifically the need to appropriately model sensors through the likelihood function, and the possibility of building very different data fusion architectures from
the essential Bayesian form.
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Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion
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Mathematical structure of a decentralised data fusion node

H. Durrant-Whyte, T. C. 
Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in 
B.Siciliano, O. Khatib
(eds.) Springer Handbook 
of Robotics, 2008
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Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion
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A synopsis of the ANSER II autonomous network and its operation. 
(a–c) Main system components;
(a) air vehicle,
(b) ground vehicle, 
(c) human operative. 

(d–e) The perception process; 
(d) top three dimensions of features discovered from
ground-based visual sensor data along with the derived mixture model describing these feature 
properties
(e) sector of the overall
picture obtained from fusing air vehicle (UAV), ground vehicle (GV) and human operator (HO) 
information. Each set of ellipses
corresponds to a particular feature and the labels represent the identity state with highest 
probability.

(f–i) Sequential fusion
process for two close landmarks: (f) a tree and a red car, (g) bearing-only visual observations of 
these landmarks are successively
fused, (h) to determine location and identity (i). 

Note the Gaussian mixture model for the bearing measurement likelihood

H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. Khatib (eds.) Springer Handbook of 
Robotics, 2008



NN mitigation
Preliminary ideas

• (adaptive) Modeling of the area (emi) sphere of r ≈ 10 m to 5 km by a network of
robots equipped at least with onboard seismometers which change adaptively their
positions

• Dynamic optimization of sensor positions (for example doubling those already
installed?)
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Decentralised Data Fusion like AnserII but with two main 
changes

84

Mathematical structure of a decentralized data fusion node

Density proxy measures 
on a (Voronoi, Vanilla, other?) grid? 
Also terrain morphology 
and usage patterns (people,…)

Semi-supervised, 
Reinforcement Learning?
Deep Reinforcement Learning 
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Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion
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Quantum by INNOSEIS (a spin-out from the
National Institute for Subatomic Physics in the
Netherlands) is an ultra-light weight (< 1kg) wireless
seismic sensor network that dramatically reduces
deployment costs, while scaling up to 1 million
nodes for onshore exploration. It has be designed
for static Wireless, sensor networks. However, a
daisy-chain small network is operating in Cascina
already and no major issues prevent to mount them
on mobile platforms.
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T. Bulik and team’s geophone

Infrasound microphone

Needed to characterize the 
infrasound field, Low cost, 
Sensitivity in the range of 1-30Hz, 
lots of uses: geophysics, 
volcanology etc, Potential 
industrial applications, Prototype 
ready – network to be installed in 
Virgo this year



A Multisensory Multiagent platform for GW detection
and Geophysics applications: Theory

8
7

Multi-robot reconstruction of a spatial signal driven by the
information gain



Multi-robot reconstruction of a spatial signal driven by the 
information gain, see: 2019 International Conference on Robotics and Automation (ICRA),

Montreal, Canada, May 20-24, 2019

• Signal modeling by GP regression

• Information Gain 

• Multi-robot coordination and task allocation



Important Remark
àThis is already totally feasibleß

1
1
7

Both mobile sensors and mobile multisensory fusion
network can be developed and tested already in Ligo-
Virgo-Kagra-Ligo India

They can be integrated with fixed sensors

They could improve noise characterization in ET



More expected in the future

1
1
8

DARPA Subterranean Challenge
https://www.subtchallenge.com/ 



1
1
9



1
2
0
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more complex…
we are here…outcome from wg2 cooperation between Heron Robots and 

Astrocent (T. Bulik and team)
Mobile seismic sensor

• to be used in inaccessible 
areas, possibility of 
characterizing seismic fields 
with a small number of 
sensors, adjustable sensor 
array layout, prototype ready

• Ros on Raspberry PI: SW stack 
can fit to any similar robot 
(including ’Roomba/Create’) 
with minimum changes’
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more complex…
we are here…outcome from wg2 cooperation between Heron Robots and 

Astrocent (T. Bulik and team)

Infrasound microphone

• Needed to characterize the 
infrasound field, Low cost, 
Sensitivity in the range of 1-
30Hz, lots of uses: geophysics, 
volcanology etc, Potential 
industrial applications, 
Prototype ready – network to 
be installed in Virgo this year
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In NASA footsteps J

https://mars.nasa.gov/insight/mission/quick-facts/



Specific ML/DL Challenges

1
2
4

Learning Multiple Matrix/Tensor Time Series

Not ‘so Big Data’

Learning on (Complex) manifolds

Entropy/Information Metrics on (Complex) Manifolds

Course of dimensionality



Curse of Dimensionality

Figure 5.9

remember: Chess vs Go

from Deep Learning
www.deeplearningbook.org
Ian Goodfellow
2016-09-26



Nearest Neighbor

Figure 5.10

from Deep Learning
www.deeplearningbook.org
Ian Goodfellow
2016-09-26



Manifold Learning

Figure 5.11

from Deep Learning
www.deeplearningbook.org
Ian Goodfellow
2016-09-26



Increasing Depthfrom Deep Learning
www.deeplearningbook.org
Ian Goodfellow
2016-09-26
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Hints that DL … MUST WORK



Well,…

(stolen from Giorgio Metta)



Well,…

(stolen from Giorgio Metta)



Looking for new paths forward...
For example: Information self-

structuring
•Experiments:

•Lungarella and Sporns, 2006
Mapping information flow
in sensorimotor networks
PLoS Computational Biology

2
9
9



Lungarella, 
Sporns (2006)





Snakebot

3
0
2

see: Tanev et. al, IEEE TRO, 2005



Maybe not GOF Euclidean space? :-)

3
0
3

see: Bonsignorio, Artificial Life, 2013



Bottom Line: Physics Matters!

304

Coping with the common underlying theoretical
issues implied by the application of ML and DL to
physical systems might have deep and wide scientific
and technological impact



Bottom Line: Physics Matters!



Probabilistic Model Of Control

• Although it may seem strange only in recent times the
classical results from Shannon theory, have been
applied to the modeling of control systems.

• As the complexity of control tasks namely in robotics
applications lead to an increase in the complexity of
control programs, it becomes interesting to verify if, from
a theoretical standpoint, there are limits to the
information that a control program must manage in order
to be able to control a given system.



Probabilistic Model Of Control

Directed acyclic graphs representing a control process. (Upper left) Full control system with a sensor and an actuator. (Lower left) Shrinked 
Closed Loop diagram merging sensor and actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel enacted by 
the controller's state C=c. 

Touchette, 
Lloyd (2004)



Models of ‘Morphological Computation’



My point of view :-)

• Information related measures coming from Shannon 
entropy may help the understanding of  intelligent 
cognitive controlled systems

• What we probably need to be able to build 'real' 
artificial cognitive systems is a deep interchange of 
concepts, methods and insights between fields so 
far considered well distinct like information and 
control theory, non linear dynamics, general AI and 
psycology and neurosciences. 



Jardon A. , Stoelen M., Bonsignorio F.P., Balaguer C. ,Task-oriented kinematic optimization of a symmetric assistive climbing robot,
IEEE T-RO, 27 (6), 1132-1137, 2011

Stoelen M.F., Bonsignorio F., Cangelosi A., Co-exploring actuator antagonism and bio-inspired control in a printable robot arm, In
Procs ofInternational Conference on Simulation of Adaptive Behavior, 244-255,2016
Stoelen M. F. , de Tejada V. F., Huete A. J., Balaguer C., Bonsignorio F., Distributed and Adaptive Shared Control Systems:
Methodology for the Replication of Experiments, IEEE Robotics & Automation Mag. , 22(4),137–146, 2015



• F. Bonsignorio and E. Zereik. A Simple Visual-Servoing Task
on a Low-Accuracy, Low-Cost Arm: An Experimental
Comparison Between Belief Space Planning and
Proportional-Integral-Derivative Controllers. IEEE Robotics &
Automation Magazine. 2020, early access



R-Articles

Bonsignorio F., A new kind of article for reproducible research in intelligent robotics, IEEE Robotics
& Automation Magazine 24 (3), 178-182, 2017



Bonsignorio, F., Preliminary considerations for a quantitative theory of networked embodied
intelligence, 50 years of artificial intelligence 4850, 112-123, 2007

embodiment: 
cognition emergent from sensory-motor and 
interaction processes

www.shanghailectures.com



HumaBeliefs

HumaBiMan

Dario P., Morachioli A., Strazzulla I., Laschi C.,Bonsignorio F., “Disassembly
Robotic Tasks for Circular Economy”(poster), IEEE Life Sciences Grand
Challenges Conference, Abu Dhabi, UAE, 2016



The ‘research space’ we should – imo - explore (and that 
I have actually been exploring and I’m continuing to 
explore….)

Models
of MC, Self-Organization

Experimental Methods

Wave 2/3 Applications



The ‘research space’ we should – imo - explore (and that 
I have actually been exploring and I’m continuing to 
explore….)

from Joshua Bongard, University of Vermont



The link between Morphological Computation and Soft 
Robotics

(Fumihiko Asano)

T=f(l/g)

Fixed speed!

T=f(l/g)

l=f(controlled input)

Speed can change!

( Andy Ruina)

(Yale Image Finder)

(Wikipedia)

Quantitative Modelling of the trade-offs between physical
morphology (and associated dynamics)
and information processing is crucial

That’s what Morphological Computation is about.
It explains why ‘soft’ components help many task performances and
can provide design guidance.



Some references (Feedback is welcome!)
F. Bonsignorio, Preliminary considerations for a quantitative theory of networked embodied 
intelligence, 
In: 50 years of artificial intelligence, 112-123, Springer, 2007

F. Bonsignorio, Steps to a cyber-physical model of networked embodied anticipatory behavior, 
In: Anticipatory Behavior in Adaptive Learning Systems, LNAI, 549, 77-94, Springer, 2008

F. Bonsignorio, On the Stochastic Stability and Observability of Controlled Serial Kinematic 
Chains, ESDA2010-25131, 379-386, ASME, 2010

F. Bonsignorio, Quantifying the evolutionary self-structuring of embodied cognitive networks,  
Artificial life 19 (2), 267-289, MIT Press, 2013

F Bonsignorio, E Messina, AP Del Pobil, J Hallam, Metrics of Sensory Motor Coordination and 
Integration in Robots and Animals: How to Measure the Success of Bioinspired Solutions with 
Respect to their Natural Models, Cognitive Systems Monographs, Springer, 2020

F Bonsignorio, D Hsu, M Johnson-Roberson, J Kober, Deep Learning and Machine Learning 
in Robotics, IEEE Robotics & Automation Magazine 27 (2), 20-21, 2020



Thankyou!
fabio.bonsignorio@heronrobots.com

fabio.bonsignorio@gmail.com
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