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Older and newer attempts

Juanelo Torriano alias Gianello della f}
Torre, (XVI century) a craftsman from o
Cremona, built for Emperor Charles V a
mechanical young lady who was able to
walk and play music by picking the strings
of a real lute. =

P~

Hiroshi Ishiguro, early XXI century

Director of the Intelligent Robotics Laboratory, part of the Department
of Adaptive Machine Systems at Osaka University, Japan



the success stories

DARPA (American Defense Advanced Research Projects Agency) challenges have demonstrated
how current robots are becoming more accurate, fast and dexterous in structured and

n unstructured environments. I



Not everything worked as expected!
the current approach shows some limitations

On the other hand the debriefing of DARPA DRC shows clearly that humanoid robots are still far
from the required level of capabilities in fact many metrics, such as time-to-completion,
are highly application or task specific.

According to H.Yanco a minimum of 9 people were needed to
teleoperate latest DRC’s robots!!!

Rethinking Robotics for the Robot Companion of the future



The marvellous progress of Robotics and Al...'Look
Ma, No Hands' syndrome?

iSprawl Soft gripper OCTOPUS Universal gripper Tuft Softworm Inflatable robotic arm

'T“' .
ST, >

L T Y

-

-

X-RHex Soft robotic fish PoseiDrone Origami robot Rehabilitation glove Octobot

Entirely soft



Is It Alive?

Big Questions lie in front of us!




Two views of intelligence

classical:
cognition as computation




Soft Robotics: a working definition

Variable impedance actuators and
stiffness control
# Actuators with variable impedance
# Compliance/impedance control

# Highly flexible (hyper-redundant or
continuum) robots

Use of soft materials in robotics

Robots made of soft materials that undergo
high deformations in interaction

*# Soft actuators and soft components

*# Control partially embedded in the robot
morphology and mechanical properties

THE BIOROBOTICS
INSTITUTE

IEEE Robotics and Automation Magazine,
Special Issue on Soft Robotics, 2008
A. Albu-Schaffer et al. (Ed.s)

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution in
robotics, Trends in Biotechnology, April 2013.

Laschi C. and Cianchetti M. (2014) ‘“Soft Robotics: new perspectives for robot
bodyware and control” Frontiers in Bioengineering and Biotechnology, 2(3)



Why it matters

At lust — a computer program tha
can beat a champion Go play '
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Mastering the game of Go with deep neural
networks and tree search

David Silver &, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
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Abstract

The game of Go has long been viewed as the most challenging of classic games for artificial
intelligence owing to its enormous search space and the difficulty of evaluating board
positions and moves. Here we introduce a new approach to computer Go that uses ‘value

networks' ta evaliiate hoard nositions and 'nolicv networks’ to select moves These deen

stitution

Buy or subscribe ‘

Editorial Summary
AlphaGo computer beats Go champion
The victory in 1997 of the chess-playing computer Deep Blue
inasix-game series against the then world champion Gary
Kasparov was seen as a significant milestone in the

of artificial i i Aneven greater

show all

Associated Content
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The multidisciplinary nature of machine
intelligence



Why it matters

nature View all Nature Research journals Search (_{ Log!
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‘It will change everything’: DeepMind’s Al
makes giganticleap in solving protein
structures

Google’s deep-learning program for determining the 3D shapes of proteins
stands to transform biology, say scientists.

Ewen Callaway

RELATED ARTICLES

Al protein-folding algorithms g
solve structures faster than Q2
ever

Therevolutionwillnotbe
crystallized: anew method
sweeps through structural
biology

The computational protein _3 T
designers "




Chess: New York, 1997

1 win 3 draws 2 Wins



Go: Hong Kong, 2017

Google’s AlphaGo Defeats Chinese Go
Master in Win for A.IL

Ke Jie, the world’s top Go player, reacting during his match on Tuesday against AlphaGo, artificial
intelligence software developed by a Google affiliate. China Stringer Network, via Reuters

By Paul Mozur

May 23,2017 f v e D

BIE R AT

HONG KONG — It isn’t looking good for humanitv.



A comparison

Chess and GO are ‘perfect information games’

They always have an optimal value function which determines, under perfect game
assumptions by all players, the outcome of the game from any initial state s.

The recursion tree in such games will include roughly b9 moves
« Chess:b=35,d~=80

- Go: b~ 250,d = 150

Interestingly the developers of AlphaGo have implemented an exhaustive testing and
evaluation schema to compare and refine different gaming policies by mixing Montecarlo
Simulations, Machine learning and guided sampling techniques.



Remarks

* In embodied Al (aka intelligent robotics!) deterministic
approaches are practically impossible to implement -> No
‘perfect information games’

 We are very much likely still far from what we have to cope
with for a robot operating in the real world, but it can be
seen as a better approximation than Chess....and other
proposed before.

Silver, D. et al. , Mastering the game of Go with deep neural networks and tree search,
Nature 529, 484489, 2016
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Newtonian Noise (a naive view),
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Newtonian Noise (a naive view),




Netwonian Noise
A naive view

Main Issue: Rayleigh waves (and lacking knowledge of underground mass distribution)

Problem: model underground and surface mass distribution and land motion
(same issue with the atmosphere) to characterize and predict Rayleigh waves



Other sources of noise:
‘Environmental’

l.e.

« Acoustic

- EM

e Others...



Multisensory Data Fusion in Robotics

Multisensor data fusion is the process of combining observations from a number of
different sensors to provide a robust and complete description of an environment or
process of interest.

Data fusion finds wide application in many areas of robotics such as object
recognition, environment mapping, and localisation.

From: H. Durrant-Whyte, T. C. Henderson,

Multisensor Data Fusion,

Part C, Chapter 25, in B.Siciliano, O. Khatib (eds.) Springer Handbook of
Robotics, 2008



Multisensory Data Fusion in Robotics

Principles

It’'s essentially an application of Bayes’ rule: P(x|z)= P ]lj’(‘);)(x)_
<

assuming conditional independence: pz;, ... z,|x)=P(z;|x)--- P(z, | X)

=[]Pailx.

We get the multisensory expression: P(x|Z") = CP(x)l_[ Pz | x),
i=1

and its recursive form: b P@k|x)P(x | Z="
P(x|Z")= 3
P(Zk | Z _l)




Multisensory Data Fusion in Robotics
Methods

« Bayes’ Rule

* Probabilistic Grids

« The Kalman Filter (plus Extended Kalman Filters, Information Filters, etc.)
« Sequential Monte Carlo Methods

« Alternatives to Probability



P(x1,x1)

JP(xpoxir)dxiy

P(xy1)

122

1
08 H. Durrant-Whyte, T. C. Henderson,
B recire PGt d Multisensor Data Fusion,
o4 Part C, Chapter 25, in B.Siciliano, O.
02 Khatib (eds.) Springer Handbook of
s Robotics, 2008

X = f e, Up)

070

Fig.25.1 Time update step for the full Bayes filter. At a time k — 1, knowledge of the state x;_; is summarised in
a probability distribution P(x;_;). A vehicle model, in the form of a conditional probability density P(xx | x¢—1), then
describes the stochastic transition of the vehicle from a state x;_; at a time kK — 1 to a state xy at a time k. Functionally,
this state transition may be related to an underlying kinematic state model in the form xx = f(xx—1, ux). The figure shows
two typical conditional probability distributions P(xy | x¢—1) on the state x; given fixed values of x;_;. The product
of this conditional distribution with the marginal distribution P(x_;), describing the prior likelihood of values of xy,
gives the the joint distribution P(xy, xx—1) shown as the surface in the figure. The total marginal density P(xy) describes
knowledge of x; after state transition has occurred. The marginal density P(xy) is obtained by integrating (projecting) the
joint distribution P(xy, xx_;) over all x;_;. Equivalently, using the total probability theorem, the marginal density can
be obtained by integrating (summing) all conditional densities P(x | xx—1) weighted by the prior probability P(xx—1) of
each x;_;. The process can equally be run in reverse (a retroverse motion model) to obtain P(xx_;) from P(xy) given
amodel P(xg_q | xx)

Rethinking Robotics for the Robot Companion of the future




P(zk|xk=x1)

P (i |x1=2x2)

1.2
| /\/'” A
. AN H. Durrant-Whyte, T. C. Henderson,
0.8 | \ . .
4 “’\\\ Multisensor Data Fusion,
0.6 / \ Bl Part C, Chapter 25, in B.Siciliano, O.

P(xz)

Khatib (eds.) Springer Handbook of
Robotics, 2008

0.4

0.2

Fig. 25.2 Observation update for the full Bayes filter. Prior to observation, an observation model in the form of the
conditional density P(zy | xx) is established. For a fixed value of xi, equal to x; or x, for example, a density func-
tion P(zx | xk =x1) or P(zx | xx = x2) is defined describing the likelihood of making the observation zx. Together
the density P(zx | xx) is then a function of both z; and xi. This conditional density then defines the observation
model. Now, in operation, a specific observation z; = x; is made and the resulting distribution P(zx = x; | x¢) de-
fines a density function (now termed the likelihood function) on x. This density is then multiplied by the prior
density P(x; ) and normalised to obtain the posterior distribution P(xy | zx) describing knowledge in the state after

m observation _



Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion

Decentralised data fusion (DDF) methods were initially motivated by the insight that the information or canonical form of the conventional Kalman filter data
fusion algorithm could be implemented by simply adding information contributions from observations. As these (vector and matrix) additions are
commutative, the update or data fusion process can be optimally distributed amongst a network of sensors-

The sensor is modelled directly in the form of a likelihood function. Once instantiated with an observation, the likelihood function is input to a local fusion loop
which implements a local form of the Bayesian time and observation update. Network nodes accumulate probabilistic information from observation or
communication and exchange mutual information (information gain) with other nodes in the network. This mutual information is transmitted to and
assimilated by other nodes in the network in an ad-hoc manner. The result is that all nodes in the network obtain a single integrated posterior probability
based all node observations.

The ANSER Il system consists of a pair of autonomous air vehicles equipped with infra-red and visual sensors, a pair of unmanned ground vehicles equipped
with visual and radar sensors, and additional information provided by geometric and hyper-spectral data bases, along with information input by human
operatives. The likelihood functions for singlesensor features are obtained through a semi-supervised machine learning method. The resulting
probabilities are modeled in the form of a mixture of Gaussians. Each platform then maintains a bank of decentralised, non-Gaussian Bayesian filters for the
observed features, and transmits this information to all other platforms. The net result is that each platform maintains a complete map of all features
observed by all nodes in the network. Multiple observations of the same feature, possibly by different platforms, results in an increasingly accurate estimate

of the feature location for all nodes.
The ANSER Il system demonstrates a number of general principles in Bayesian data fusion methods.

Specifically the need to appropriately model sensors through the likelihood function, and the possibility of building very different data fusion architectures from
the essential Bayesian form.




Multisensory Data Fusion in Robotics
Example: ANSER Il: Decentralised Data Fusion

e H. Durrant-Whyte, T. C.
Preprocess 1 \ Henderson,
zi(k P;(z]|x ikeli P i i
y| and feature N2, %eﬂélty il )/ leehgolod Channel filter ket Multisensor Data Fusion,
\ extraction tng mnads Part C, Chapter 25, in
B.Siciliano, O. Khatib

Pi(z=z(k
(z=2( )IX)‘ (eds.) Springer Handboo

of Robotics, 2008

v

Observation P(xk|Zk’l zi(k))
: »3i | Channel . e Q;
update l manager Channel filter >

(multiplication

A
il o
P(xd 25 P(xi| 2% zi(k))
Time update P(x| Z¥) Assimilation |
(convolution) (multiplication) P(xk|20,2P)

Mathematical structure of a decentralised data fusion node

Rethinking Robotics for the Robot Companion of the future




Multisensory Data Fusion in Robotics
Example: ANSER Il: Decentralised Data Fusion

A synopsis of the ANSER Il autonomous network and its operation.
(a—c) Main system components;

(a) air vehicle,

(b) ground vehicle,

(c) human operative.

(d—e) The perception process;

(d) top three dimensions of features discovered from

ground-based visual sensor data along with the derived mixture model describing these feature
properties

(e) sector of the overall

picture obtained from fusing air vehicle (UAV), ground vehicle (GV) and human operator (HO)
information. Each set of ellipses

corresponds to a particular feature and the labels represent the identity state with highest

probability.

(f—i) Sequential fusion
process for two close landmarks: (f) a tree and a red car, (g) bearing-only visual observations of

these landmarks are successively
fused, (h) to determine location and identity (i).

Note the Gaussian mixture model for the bearing measurement likelihood

H. Durrant-Whyte, T. C. Henderson,

Multisensor Data Fusion,

Part C, Chapter 25, in B.Siciliano, O. Khatib (eds.) Springer Handbook of
Robotics, 2008




NN mitigation
Preliminary ideas

« (adaptive) Modeling of the area (emi) sphere of r = 10 m to 5 km by a network of

robots equipped at least with onboard seismometers which change adaptively their
positions

« Dynamic optimization of sensor positions (for example doubling those already
installed?)



Decentralised Data Fusion like Anserll but with two main

changes

Semi-supervised,
e Reinforcement Learning?

Sensor node

model

—

Channel filter |

Observation

- - SO ,
ﬂ Preprocess \z, (k) | Density | Piz|¥) /] Likelihood
» and feature > : ¢
\ i fitting
extraction
Pi(z=z(k)| x)
v

Pl 2 ,2i(k))

Deep Reinforcement Learning

P

>

Channel

update
(multiplication

Y

Density proxy measures g
on a (Voronoi, Vanilla, other?) grid?

P(xi| Z5)

manager

Channel filter

P(xx| Z5" zi(k))

Also terrain morphology Time update [§

Assimilation |

(multiplication)

P(Xk|ZQ, ZP)

\ (convolution)
and usage patterns (people,...)

Mathematical structure of a decentralized data fusion node

Rethinking Robotics for the Robot Companion of the future



Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion

. Quantum by INNOSEIS (a spin-out from the
National Institute for Subatomic Physics in the
Netherlands) is an ultra-light weight (< 1kg) wireless
seismic sensor network that dramatically reduces
deployment costs, while scaling up to 1 million
nodes for onshore exploration. It has be designed
for static Wireless, sensor networks. However, a
daisy-chain small network is operating in Cascina
already and no major issues prevent to mount them
on mobile platforms.

Rethinking Robotics for the Robot Companion of the future



T. Bulik and team’s geophone

Infrasound microphone

!‘“ | — ' Needed to characterize the

infrasound field, Low cost,
Sensitivity in the range of 1-30Hz,
lots of uses: geophysics,
volcanology etc, Potential
industrial applications, Prototype
ready — network to be installed in
Virgo this year




A Multisensory Multiagent platform for GW detection
and Geophysics applications: Theory

Multi-robot reconstruction of a spatial signal driven by the
information gain



Multi-robot reconstruction of a spatial signal driven by the

|nf0 rm atlon gal n y see: 2019 International Conference on Robotics and Automation (ICRA),
Montreal, Canada, May 20-24, 2019

Signal modeling by GP regression
Information Gain

Multi-robot coordination and task allocation



Important Remark
> This is already totally feasible<

Both mobile sensors and mobile multisensory fusion
network can be developed and tested already in Ligo-
Virgo-Kagra-Ligo India

They can be integrated with fixed sensors

They could improve noise characterization in ET




More expected in the future
S5

[Fruas|

UNEARTHING THE SUBTERRANEAN ENVIRONMENT

SUBTERRANEAN CHALLENGE

Revolutionize how we operate in the underground domain

FINAL EVENT SEPT 21-24, 2021

19 DAYS

8 SYSTEMS TEAMS COMPETING FOR $3.5M IN TOTAL PRIZES
12 VIRTUAL TEAMS COMPETING FOR $1.5M IN TOTAL PRIZES

DARPA Subterranean Challenge
https://www.subtchallenge.c N/l
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more complex...
we are here...outcome from wg2 cooperation between Heron Robots and
Astrocent (T. Bulik and team)

Mobile seismic sensor

to be used in inaccessible
areas, possibility of
characterizing seismic fields
with a small number of
sensors, adjustable sensor
array layout, prototype ready

Ros on Raspberry Pl: SW stack
can fit to any similar robot
(including 'Roomba/Create’)
with minimum changes’

::ROS



more complex...
we are here...outcome from wg2 cooperation between Heron Robots and
Astrocent (T. Bulik and team)

Infrasound microphone

Needed to characterize the
infrasound field, Low cost,
Sensitivity in the range of 1-
30Hz, lots of uses: geophysics,
volcanology etc, Potential
industrial applications,
Prototype ready — network to
be installed in Virgo this year




In NASA footsteps ©

https://mars.nasa.gov/insight/mission/quick-facts/

Key Facts About NASA's InSight




Specific ML/DL Challenges

Learning Multiple Matrix/Tensor Time Series

Not ‘so Big Data’

Learning on (Complex) manifolds

Entropy/Information Metrics on (Complex) Manifolds

Course of dimensionality




Curse of Dimensionality

from Deep Learning
www.deeplearningbook.org
lan Goodfellow
2016-09-26

Figure 5.9

remember: Chess vs Go



Nearest Neighbor

\/

O O

from Deep Learning
www.deeplearningbook.org
lan Goodfellow
2016-09-26

Figure 5.10



Manifold Learning

from Deep Learning
www.deeplearningbook.org
lan Goodfellow
2016-09-26
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Figure 5.11



... INCreasing Depth

www.deeplearningbook.org
lan Goodfellow
2016-09-26 i Effect of Depth
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Hints that DL ... MUST WORK
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Towards a regularity theory for ReLU networks —
chain rule and global error estimates

Julius Berner*, Dennis Elbrichter*, Philipp Grohst, Arnulf Jentzen$
*Faculty of Mathematics, University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
iFaculty of Mathematics and Research Platform DataScience @ UniVienna, University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
§Department of Mathematics, ETH Ziirich
Réamistrasse 101, 8092 Ziirich, Switzerland

Abstract—Although for neural networks with locally Lipschitz
continuous activation functions the classical derivative exists
almost everywhere, the standard chain rule is in general not
applicable. We will consider a way of introducing a derivative for
neural networks that admits a chain rule, which is both rigorous
and easy to work with. In addition we will present a method of
converting approximation results on bounded domains to global
(pointwise) estimates. This can be used to extend known neural
network approximation theory to include the study of regularity
properties. Of particular interest is the application to neural
networks with ReLU activation function, where it contributes to
the understanding of the success of deep learning methods for
high-dimensional partial differential equations.

Rethinking Robotics for the Robot Companion of the future

a way that admits a chain rule which is both rigorous as
well as easy to work with. Chain rules for functions which
are not everywhere differentiable have been considered in a
more general setting in e.g. [[16]], [17]. We employ the specific
structure of neural networks to get stronger results using
simpler arguments. In particular it allows for a stability result,
i.e. Lemmal(IIL3] the application of which will be discussed in
Section V. We would also like to mention a very recent work
[18] about approximation in Sobolev norms, where they deal
with the issue by using a general bound for the Sobolev norm
of the composition of functions from the Sobolev space WW1°.




Well,...

State of Al — some considerations

oThe "billion” parameters club — how large, up to 175B these
days!
oCost (more later), about $1 per 1000 parameters
olnteresting: outrageous cost for incremental improvement
oNeed research and theory
oWe can be more efficient in training algorithms

olLarge models are driven by efficiency with small data
oSometimes... with transfer learning

oPower-law — parameter & computational power do not scale
linearly (which is bad!)

(stolen from Giorgio Metta)



Well....
The "billion” parameter club

2018 (left) through 2019 (right) 2020 onwards 1758
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(stolen from Giorgio Metta)



Looking for new paths forward...
For example: InNformation self-

structuring
‘Experiments:

‘Lungarella and Sporns, 2006
Mapping information flow

in sensorimotor networks =
PLoS Computational Biology/ ... .=




Lungarella,
Sporns (2006)

Figure 1. Robots, Sensorimotor Interactions, and Neural Control Architecture

(A1) Roboto has a total of 14 DOF, five of which are used in the current set of experiments. Note the head-mounted CCD camera, the pan-tilt head
system (2 DOF), and the moveable left arm with shoulder, elbow, and wrist joints (3 DOF). The cbject is a red ball (1.25 inches diameter) attached to the
tip of the last joint

(A2) Strider has a total of 14 DOF, with four legs of 3 DOF each and 2 DOF in the pan-tilt head system. Objects are red and blue blocks (1 inch cubes).
Strider is situated in an environmental enclosure with black walls.

(A3) Madame has 4 DOF, with 2 DOF in the pan-tilt system and 2 DOF for the wheels, which are both located on an axis vertical to the main body axis.
The envircnment is a square arena bounded by blue walls containing 20 red-colored floating spheres.

(B1) Roboto engages in sensorimotor interactions via the head system and arm movements; sensory — motor (dotted arrows), motor — sensory
(dashed arrows).

(B2) Strider engages in sensorimotor interactions via the head system, as well as via steering signals generated by the head and transmitted to the four
legs.

(B3) Madame’'s behavior consists of a series of approaches to colored objects and ovations. Fixations to the objects are maintained by independent
action of head and body.

(C) Neural control architecture. The architecture common to all robots is composed of color image arrays Ig, /o /e color- intensity map Colgcey. and
saliency map Sal (see text for details). The peak of the saliency map (blue cross) determines the pan-tilt camera motion and body steering. In addition,
Strider's neural system contains a value system with taste sensory inputs relayed via a virtual taste sensor (blue square in visual image) to taste neurons
(Tae av). which in turn generates reward and aversiveness signals (rew, ave). These signals are used to modulate the strengths of the saliency factors
Necey (see text for details).

DOCI: 10.137 1/journal.pcbi.0020144.g001
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Figure 3. Information Flow (Transfer Entropy) between Sensory Input, Neural Representation of Saliency, and Motor Variables in Roboto

(A1) Transfer entropy between array /g (variable S) and pan-tilt amplitude (variable M). Series of plots show maps of transfer entropy from S to M (S —
M) and from M to S (M — S) over visual space (55 X 77 pixels), calculated for offsets between —7 (“M leading S™) and +7 (S leading M™) time steps. Plots
show data for conditions “fov™ and “rnd.” The gray scale ranges from 0.0 to 0.5 bits (for all plots in panels A1 and B1).

(A 2) Curves show transfer entropy for five individual runs (thin lines) as well as the average over five runs (thick lines) between the single central pixel of
array /g (S) and pan-tilt amplitude (M), for directions M — S (black) and S — M (gray).

(A3) z-Score maps of significant image regions (plotted between z— 0 and z — 6). The z-scores are expressed as number of standard deviations above
background at time offset +1 (S — M) and —1 (M — S). Mean and standard deviation of background is calculated from transfer entropy values at
maximal time delays (—7,+7 time steps).

(B) All three panels have the same format as (A), but the neural activations of the saliency map Sal are substituted as variable S (11 < 11 neural units).
DOI: 10.137 1V/journal.pcbi.0020144.g003



Snakebot

RS

see: Tanev et. al, IEEE TRO, 2005



Maybe not GOF Euclidean space? :-)

cccccccc

see: Bonsignorio, Artificial Life, 2013



Bottom Line: Physics Matters!

Coping with the common underlying theoretical

iIssues implied by the application of ML and DL to

physical systems might have deep and wide scientific

and technological impact
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Bottom Line: Physics Matters!

High Dimensionality Example: Protein Folding
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Probabilistic Model Of Control

« Although it may seem strange only in recent times the
classical results from Shannon theory, have been
applied to the modeling of control systems.

 As the complexity of control tasks namely in robotics
applications lead to an increase in the complexity of
control programs, it becomes interesting to verify if, from
a theoretical standpoint, there are Iimits to the
information that a control program must manage in order
to be able to control a given system.



Probabilistic Model Of Control

. - Touchette,
Lloyd (2004)

o
S A C

X X X X
\/ © /
o
C C=c

Directed acyclic graphs representing a control process. (Upper left) Full control system with a sensor and an actuator. (Lower left) Shrinked

Closed Loop diagram merging sensor and actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel enacted by
the controller's state C=c.

X
X
X




Models of ‘Morphological Computation’

In [59], the network of agents, where each word is initially represented by a subset
of three or more nodes with all (possible) links present, evolves towards an equilib-
rium state represented by fully connected graph, with only single links.

The statistical distribution, necessary to determine the information managing capa-
bility of the network of physical agents and to link to equation (2) can be obtained
from equations derived in the statistical physics of network domain.

From (2) it is possible to derive the relations recalled here below (these relations are
demonstrated in the appendix).

K(X) Zlog Yetosat o

open

As told, relation (I) links the complexity ('the length') of the control program of a
physical intelligent agent to the state available in closed loop and the non controlled
condition. This shows the benefits of designing system structures whose 'basin of at-
tractions' are close to the desired behaviors in the phase space.

AHN +3 AH, - Al <1(X:C) (In

Relations (II) links the mutual information between the controlled variable and the
controller to the information stored in the elements, the mutual information between
them and the information stored in the network and accounts for the redundancies
through the multi information term A7.

Relations (III) links the program complexity of the controller to the information
stored in the elements, the mutual information between them and the information
stored in the network.

K(X)=AHN +> AH,-AI (I

Relations (IV) links the program complexity of the controller to the information
stored in the elements the mutual information between them and the information
stored in the network.

Q
AHN = log —<lesed 4 A av)

These relations are quite preliminary, and perhaps need a more rigorous demonstra-
tion, but give an insight on how information is managed within a network of physical
elements or agents interacting with a given environment in a finalized way. They sug-
gest how the cognitive adaptation is at network level: in any environment niche it is
possible with small networks of highly sophisticated individual agents, like in human
societies, or with many limited autonomy individuals like in ant colonies, with a great
variety of possibilities in the middle.



My point of view :-)

 Information related measures coming from Shannon
entropy may help the understanding of intelligent
cognitive controlled systems

* What we probably need to be able to build 'real’
artificial cognitive systems is a deep interchange of
concepts, methods and insights between fields so
far considered well distinct like information and
control theory, non linear dynamics, general Al and
psycology and neurosciences.



Task-Oriented Kinematic Design of a Symmetric

Assistive Climbing Robot

Alberto Jardén, Martin F. Stoelen, Fabio Bonsignorio,
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Co-exploring Actuator Antagonism and Bio-inspired
Control in a Printable Robot Arm

Authors Authors and affi

Martin . Stoelen (9, Fabio Bonsignorio, Ange

Conference paper
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First Online: 10 August 2016

Citations Do

Part of the Lecture Notes in Computer Scien¢

Abstract

The human arm is capable of perfo1
pointing with a mouse cursor, but it
tissues of which it is composed. Rot
when operating in real-world envirc
softness comes at a price, typically :
given task speed/accuracy requiren
can be simply and effectively perfor

‘human arm. First. viscoelastic acti:

b) Am front:

c) Arm side:

a) Overview

Fig.1. The GummiArm v2.1.0. All light green parts are printable on hobby-grade
3D printers, while the joints are actuated by Dynamixel (Robotis Inc, Irvine, CA,
USA) digital servos. The 5 agonist-antagonist joints provide inherent damping, impact
robustness, and stiffness adjustment in real-time, through the composite viscoelastic
tendons seen in orange and white. 3 further joints are directly driven by servos, the
upper arm roll, forearm roll, and hand close. a): The arm mounted on an aluminium
frame, with a Kinect sensor (Microsoft, Redmond, WA, USA) on a pan mechanism.
b) and c): Annotated front and side views, respectively. Thick filled-in arrows indicate
the joint Z axes.
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A Simple Visual-Servoing
Task on a Low-Accuracy,
Low-Cost Arm
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@ FROM THE FIELD

R-Articles A New Kind of Article for Reproducible

Research in Intelligent Robotics

Cognitive Systems Monographs 36 By Fabio Bonsignorio
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Preliminary Considerations for a Quantitative Theory of
Networked Embodied Intelligence

Authors Authors and affiliations
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cognition emergent from sensory-motor and
interaction processes

This paper exposes and discusses the concept of 'networked embodied cognition’, based on

natural embodied neural networks, with some considerations on the nature of natural collectiv

intelligence and Egnition.ald with refience to natural biological examples, evolution theory

WWW.S hea e CHIHRS:6 OF)):: this couldbe the

method of cognitive adaptation to the environment most widely used by living systems and

Bonsignorio, F., Preliminary considerations for a quantitative theory of networked embodied
intelligence, 50 years of artificial intelligence 4850, 112-123, 2007



An Imitation Learning Approach for the
Control of a Low-Cost Low-Accuracy
Robotic Arm for Unstructured Environments

Fabio Bonsignorio!, Cristiano Cervellera?!, Danilo Maccio®!
. . 2*1-
and Enrica Zereik

1. Heron Robots, Via Malta 3/7, Genoa, 16121, Italy.
2*Institute of Marine Engineering, Italian National Research
Council, Via de Marini 16, Genoa, 16149, Italy.

*Corresponding author(s). E-mail(s): enrica.zereik@cnr.it;
TThese authors contributed equally to this work.

Abstract
‘We have developed an imitation learning approach for the image-based
control of a low-cost low-accuracy robot arm. The image-based con-
trol of manipulation arms is still an unsolved problem, at least under
challengmg condltlons such as those here addressed Many attempts

Bl

(a) DeepMind Reacher (b) HzArm visual-servoing

Fig. 9: Comparison among the proposed H2Arm visual-servoing task and the
“Reacher” task of the DeepMind Control Suite. The main characteristics of
each task are: a) DeepMind Reacher — a 2-link planar structure that has to
reach a target, executed only in simulation, with known proprioceptive mea-
sures, known target location, simulated scenario with known noise structure,
many training data needed, AI directly on image pixels. Tasks are strongly
observable, position and velocity observations depend only on the current
state. Sensor readings only depend on the previous transition, see [21]. Cour-
tesy of DeepMind. b) H2Arm — 4-link 3D manipulator, experimented in real
world, without proprioceptive information (the only sensor on-board is the
wrist-mounted camera), additional noise injected in some of the experiments,
very few needed training data (97 BSP trajectories logged in previous tests
where the arm was controlled by the BSP algorithm only, without any neural
controller), images are pre-processed by a vision algorithm and AI works on
measures estimated by vision.
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Fig. 15: After the object was picked up ‘-
posmoned in a suitable configuration to perf
two grippers facing each other, hnd the fore:

Fig. 18: View of the result of the first pick and place task using eggs. Confront
between the broken egg resulted from the manipulation of the Festo grippers
(a.b) and the sane egg manipulated with silicon thimbles (c,d).

Dario P., Morachioli A., Strazzulla I., Laschi C.,Bonsignorio F., “Disassembly
Robotic Tasks for Circular Economy”(poster), |IEEE Life Sciences Grand
Challenges Conference, Abu Dhabi, UAE, 2016



The ‘research space’ we should — imo - explore (and that
| have actually been exploring and I’'m continuing to
explore....)
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The ‘research space’ we should — imo - explore (and that
| have actually been exploring and I’'m continuing to
explore....)

from Joshua Bongard, University of Vermont



The link between Morphological Computation and Soft
Robotics
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Quantitative Modelling of the trade-offs between physical

morphology (and associated dynamics)
and information processing is crucial

That’s what Morphological Computation is about.
It explains why ‘soft’ components help many task performances and

can provide design guidance.

Front view femoris

CMMG 2008

(Wikipedia)

T=fl/g)

I=f(controlled input)

(Fumihiko Asano) Speed can change!

(Yale Image Finder)
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Thank you!

fabio.bonsignorio@heronrobots.com

fabio.bonsignorio@gmail.com
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