

Einstein Telescope EMR Site & Technology

E-TEST Team Timing 01.02.2020 – 31.xx.2023

The Financiers

E-TEST: where we stand

Deliverables

- Gathering information (ongoing)
 - Geology
 - Geophysical images
 - Geotechnical parameters
 - Hydrogeological parameters
 - Seismic noise
 - Seismology*
- Modelling (ongoing)
 - Geology
 - Seismic noise
 - Groundwater
 - Seismic hazard*
 - Positioning and costs

Latest updates : lot of field/lab work done

Key data: direct observation from 2/5 "deep" boreholes

- 1425 borehole descriptions have been collected for the study area (60 % less than 50 meters deep and 10 % of them reach depths greater than ~200 m but sparsely located in the surveyed area).
- Access to geology down to 250m
- Access to lab/in-situ hydraulic parameters
- Access to lab/in-situ geotechnical parameters on main geological formations
- Next steps: seismic noise monitoring

Key data from boreholes

Density	2.64 g/cm ³	UCS	119 MPa
Porosity	4.5 %	BTS	15 MPa
P-Wave-V.	5160 m/s	E-Modul	25 GPa

Seismic lines (structural information) upcoming

- To be updated on 7th march
- 1st Tender closed -> Unsuccessful
- 2nd Tender online since 19th Jan
- Environmental investigations finished in NL, ongoing in BE
- UXO desk study finished
- Contact with local authorities

Borehole & Surface stations

3T (2020-2024): Einstein Telescope Seismic Campaigns

Are you the operator of this network? Update this information.

FDSN code	3T (2020-2024)	Network name	Einstein Telescope Seismic Campaigns (ET)
Start year	2020	Operated by	Royal Netherlands Meteorological Institute (KNMI) ROR::
End year	2024	Deployment region	-
Description	In the scope of E-TEST (*E*instein *T*elescope *E*uregio Meuse-Rhine *S*ite & *T*echnology). Multiple seismic campaigns are planned. In each campaign, hundreds of sensors are deployed. This includes geophones, seismometers, acoustic instruments, and others.		

Citation Information

FDSN Network Information

Digital Object Identifier (DOI)	entifier (DOI) https://doi.org/10.7914/SN/3T_2020	
Citation	Shahar Shani-Kadmiel, Frank Linde, Läslo Evers, & Bjorn Vink. (2020). <i>Einstein Telescope Seismic Campaigns</i> [Data set]. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.7914/SN/3T_2020	
	For more: DataCite (JSON XML BibTeX)	

Data Access

Data Availability	Data available from: The ORFEUS Data Center (ORFEUS) : http://www.orfeus-eu.org/fdsnws/dataselect/1/
	FDSN Web Services provide a common data access API for seismic data. Availability based on irisws-fedcatalog service. Full fedcatalog information for this network
Additional Notas	Through KNMI/OREEUS/EIDA

Stations in this Network

Noise behavior and imaging

Towards a 3D subsurface image (Cottessen)

Seismic interferometry near Cottessen shows high phase velocities corresponding to hard rock near the surface

3D Cross-Border Open Geological Model

- North-East Belgium covered
- South Limburg poorly explored
- Significant improvement of model expected with inclusion of active/passive seismic data, ongoing geophysical exploration (ERT by ULiege) and borehole data

Upcoming:

- Ongoing improvement of model
- Quantification of uncertainties of model input
- Animation of geological uncertainty and AR/VR for ET Conference in Walloon Region (March 22)

3D Cross-Border Open Geological Model

Groundwater model in the EMR region

- At least 1370 groundwater extracting wells
 - Most of them extract water in shallow aquifers
- 28 200 000 m³ of water extracted in 2018
 - 25 pumping wells with a mean annual pumping rate of 809 000 m³ per year account for 95 % of the water extracted in Wallonia, Flanders and the Netherlands
 - German extraction of groundwater is subtracted from the recharge

Conceptual model : update based on latest data

10.03.22

New simulations based on the outcomes of Cottessen drillings

Preliminary Analysis from CSL/ULIege project (Hans-Balder Havenith and Romy Schloegel) + TU DElft

• InSAR processing with the TEP Geohazards platform with P-SBAS (Parallel Small BAseline Subset) developed by CNR-Irea

Ascending track #88 between 2020/12/26 & 2021/07/24 (35 images; coherence threshold: 0.4)

Next steps

Installation of corner reflectors (and integrated GNSS) for continuous monitoring and InSAR measurements validation Integrated Geodetic Reference Stations DBFT reflector (NdIs) >

Use of CSL InSAR Suite and Multitemporal Small BAseline Subsets [Samsonov and d'Oreye, 2012] in comparison with MT-InSAR from Coherent Scatterers (CS) at TUDelft to retrieve ground displacement in various directions

What we will probably deliver with E-TEST

- Quantification of geo-parameters (from rock strength to geophysical proxys at various scales)
- Quantify the subsurface uncertainty and reduction of it (geo-model)
- Measurements of seismic noise at depths in the EMR area
- Groundwater flow model and ET impact
- Define where we should focus on to further de-risk the area

Forecast

 \mathbf{N}

