Combinatorial
Optimization for Sensor
Placement with Deep
Reinforcement Learning

Dr. Conor Muldoon, University College Dublin




Sensor placement problem

» Subset selection

» Given a finite set of locations, choose a subset that maximises the utility

» Example utility functions include the entropy of Gaussian processes and the mutual
information of Gaussian processes of the selected set and unselected set

» Set cover is a special case
» NP-hard

» Combinatorial problem

» There may be places where sensors or seismometer cannot be placed.

» Sensors can only be placed to a certain accuracy




Submodular Optimisation

» Set function F on V is called submodular if
For all A,B C V: F(A)+F(B) > F(AUB)+F(ANB)
» Equivalent diminishing returns characterization:

For ACB, s¢B, F(A U {s}) = F(A) > F(B U {s}) = F(B)

» The more sensors you have, the lower the loss, but decreases less with additional
Sensors

» Monotone function

» Greedy algorithm [Krause, et. al, 2008]
» (1-1/e)-approximation algorithm [Nemhauser, et. Al, 1978]




Numerical and metaheuristic algorithms

» Particle swarm optimisation
» Basin-hopping
» Inspired from Monte-Carlo minimization

» Differential evolution




Combinatorial optimisation with deep
reinforcement learning

>
>

Introduced by Google brain [Bello, et al., 2016]

Learn heuristics for approximate solving NP-hard optimisation problems using
deep reinforcement learning.

» Travelling salesperson problem, knapsack problem
Actor-critic architecture
Pointer networks

» Additive attention mechanism

» Encoders, decoders

» Recurrent neural networks

» LSTM cells
ADAM optimizer




Actor-critic architecture
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Actor-critic architecture [Sutton & Broto, 2018].




Sequence to sequence learning and
pointer networks

» Example: Predictive replies to emails.
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Vinyals, et al., Pointer Networks, 2015




Approximating NP-hard problems

» Travelling salesperson problem

Image source Wikipedia

» Knapsack problem
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Sensor selection with pointer networks

» Introduce new loss function

» Rather using the permutation to find the shortest tour, use the first k
elements of as the selected sensor locations.

» Different loss function

» Pointer network passes the result of the additive attention mechanism to
softmax

» Greedy decoding

» Choose locations with the highest probability first from the softmax function

» Sample from multimodal distribution using softmax values as parameters




Loss function

» Scaled locations

» For a Wiener Filter, the normalized residual (squared mean error between the
actual Newtonian noise and the estimated one) [Harms, 2015][Badaracco, 2021:
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» Csnis the vector of the cross power spectral densities between all sensors and
the test mass.

» C_lis the matrix of the cross power spectral densities of all sensors.

» Chun is the power spectral density of the Newtonian noise in the test mass.




Preliminary implementation

Trained on Tesla M10 GPU
Implemented in PyTorch

80 sensor locations in pointer network
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Works in principle, but several improvements in relation to scalability in
terms of potential sensor locations.

» Recurrent networks with a large dictionary will be very deep if viewed from
an unrolled perspective.

» Architecture and encoding could be improved

» GPU memory issues




Future Directions
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Active search

» Overfitting is not a problem in this instance
Beam search with truncation

» Heuristic/optimisation for breadth first search
Transformer rather than LSTM cells

Deep reinforcement learning for numerical optimisation.
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