Common Tools for the *Einstein Telescope* community

@ XII Einstein Telescope Symposium

Hungarian Academy of Science June 2022

Andrea Maselli Siong Heng Michal Bejger

- O Longer inspiral signals
- More sensitive at high-frequencies
- *High signal-to-noise ratios*

Evans & Hall Class. Quant. Grav. 36, 22 (2019)

ET science cases_

ET does not only improve current physics, but opens for new science windows

O Develop such science cases and assess ET ability to chase for them is key to support the project and the community (Obsevational Science Board X)

ET science cases_

ET does not only improve current physics, but opens for new science windows

O Develop such science cases and assess ET ability to chase for them is key to support the project and the community (Obsevational Science Board X)

Li +, Phys Rev. D 105, 043010 (2022) Harms +, 2205.02499 (2022) Borhanian +, 2202.11048 (2022) Iacovelli +, to appear (2022)

GWFish

Common effort_

GWFast

M. Mancarella, F. Iacovelli, M. Maggiore

GWBench

S. Sborhanian, B. Sathyaprakash

TiDoFM

Y. Li, M. Chan, C. Messenger, X. Fang, S. Heng U. Dupletsa, B. Biswajit, J. Tissino, J. Harms

GWFish

Common effort_

GWFast

M. Mancarella, F. Iacovelli, M. Maggiore

GWBench

S. Sborhanian, B. Sathyaprakash

TiDoFM

Y. Li, M. Chan, C. Messenger, X. Fang, S. Heng **GWFish**

U. Dupletsa, B. Biswajit, J. Tissino, J. Harms

Common features ___

All around suite's specifications

- **O** Time and frequency domain codes for waveform generation and statistical errors on source parameters
- **O** A variety of GW templates already available (TaylorF2, Phenom,...)
 - O Ready-to-include more sophisticate models
 - O Ready-to-use standard GR tests
- **O** Easy to include post-merger templates for ringdown analysis
- **O** Tidal Love numbers to study neutron star physics
- **O** Interface with LAL suite
- **O** Time dependent pattern functions with detector localization
 - O Detector orbital motion included
- **O** Multi-detector platform

Science goals ____

Study of detector configurations and impact on science cases

O Site location and orientation, arm-length, geometry

O Interplay with current and future 3G detectors, e.g. **C**osmic **E**xplorer

O Interplay with EM facilities for **multi-messenger** astronomy

O Interaction with all science divisions to study ET capabilities

Key questions with fast tools supplied by population of sources

- **O** BNS and BBH horizon
- Efficiency and detection rates
- O Joint bounds on source parameters (e.g. stellar equation of state)
- 0...

Where are we?___

After an initial independent development of each group, we have teamed up for a community effort

O Defined a set of BNS injections to test the suites and have common agreement on the parameter estimation

	Мс	eta	dL	dec	ra	iota	psi	tcoal	Phicoal	chi1z	chi2z
0	1.15	0.24900	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
1	1.15	0.24900	0.1	0.785398	0.000000	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
2	1.15	0.24900	0.1	0.785398	1.570796	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
3	1.15	0.24900	0.1	1.570796	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
4	1.15	0.24900	0.1	0.000000	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
5	1.15	0.24900	0.1	0.785398	0.785398	0.000000	0.785398	0.290958	0.785398	0.01	-0.005
6	1.15	0.24900	0.1	0.785398	0.785398	1.570796	0.785398	0.290958	0.785398	0.01	-0.005
7	1.15	0.24999	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
8	1.15	0.25000	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005

M. Mancarella U. Dupletsa F. Iacovelli S. Ronchini B. Biswajit S. Sborhanian L. Yufeng

• Work in progress, with suites already matching on the majority of the fundamental benchmark metrics

Where are we?____

After an initial independent development of each group, we have teamed up for a community effort

O Defined a set of BNS injections to test the suites and have common agreement on the parameter estimation

	Мс	eta	dL	dec	ra	iota	psi	tcoal	Phicoal	chi1z	chi2z
0	1.15	0.24900	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
1	1.15	0.24900	0.1	0.785398	0.000000	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
2	1.15	0.24900	0.1	0.785398	1.570796	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
3	1.15	0.24900	0.1	1.570796	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
4	1.15	0.24900	0.1	0.000000	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
5	1.15	0.24900	0.1	0.785398	0.785398	0.000000	0.785398	0.290958	0.785398	0.01	-0.005
6	1.15	0.24900	0.1	0.785398	0.785398	1.570796	0.785398	0.290958	0.785398	0.01	-0.005
7	1.15	0.24999	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005
8	1.15	0.25000	0.1	0.785398	0.785398	0.785398	0.785398	0.290958	0.785398	0.01	-0.005

M. Mancarella U. Dupletsa F. Iacovelli S. Ronchini B. Biswajit S. Sborhanian L. Yufeng

O Work in progress, with suites already matching on the majority of the fundamental benchmark metrics

Some results ____

BNS parameter estimation for different network configurations

Borhanian +, 2202.11048 (2022)

Change in the z-reach between A+ and 3G detectors [0.11->2.3]

	BNS				
Cosmic rate	4.7×10^{5}				
SNR ρ	≥ 10	≥ 30	≥ 100		
HLVKI+	220	7	0		
VK+HLIv	1,800	71	2		
HLKI+E	42,000	1,700	46		
VKI+C	140,000	8,900	250		
KI+EC	190,000	13,000	340		
ECS	270,000	28,000	780		

	BNS				
SNR ρ	≥	10	≥ 100		
	Zr	Z_h	Zr	Z_h	
HLVKI+	0.11	0.42	0.011	0.041	
VK+HLIv	0.22	0.9	0.022	0.087	
HLKI+E	0.64	3.3	0.06	0.27	
VKI+C	1.2	8.1	0.1	0.46	
KI+EC	1.5	9.5	0.13	0.51	
ECS	2.3	16	0.17	0.67	

Some results ____

Localisation of BNS with multi-messenger observations

Ronchini +, 2204.01746 (2022)

• Population of $N = 10^5$ events with $0^\circ \le \theta_v \le 15^\circ$

○ Large fraction @ z< 1 with $\Delta \Omega \leq 10 \ deg^2$ which allows multi wavelength EM searches

	ET	ET+CE
N _{det}	12970	23600
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	0	20
$N_{\rm det}(\Delta\Omega < 10~{\rm deg}^2)$	2	845
$N_{\rm det}(\Delta\Omega < 100~{\rm deg}^2)$	69	17049
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	526	21564

Some results ____

Time to the merger distribution for BNS @ with $\Delta \Omega \lesssim 30 \ deg^2$

Li +, Phys Rev D 105, 043010 (2022)

○ *BNS* detected ~ 10 hours before the merger with mixed network