

Gravitational waves: listening to the whispers of the Universe

Annalisa Allocca Università di Pisa & INFN sez. Pisa

28/10/2016

14/09/2015: first observation of Gravitational Waves!!

First evidence of black holes

A. Allocca - Visite Master2 P3TMA

28/10/2016

A. Allocca - Visite Master2 P3TMA

Outline

- The origin of Gravitational Waves and their effect on the matter
- Gravitational Waves detection
- The Virgo detector
- The detector network

Outline

- The origin of Gravitational Waves and their effect on the matter
- Gravitational Waves detection
- The Virgo detector
- The detector network

2015: 100 years of General Relativity

The space is *flat* and the time is *absolute*

- Gravity is the *force* acting between two masses
- Gravitational attraction is an
 Spanna attraction is an
 A. Allocca Visite Master2
 P3TMA

- Space and time are connected
- Gravity is the effect of the spacetime curvature
- Gravitational field propagates at the speed of light

Einstein's Field Equations

Matter tells the spacetime how to curve, and curved space tells to matter how to move (J. Wheeler)

Non-linear equation, solvable only in case of particular symmetry

28/10/2016

The origin of Gravitational Waves

In the *weak field regime* we can linearize:

 $G_{\mu\nu}(g) = 8\pi T_{\mu\nu}$ $g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$ Flat metric $h_{\mu\nu} \ll 1$ Small perturbation

The origin of Gravitational Waves

In the *weak field regime* we can linearize:

$$G_{\mu\nu}(g) = 8\pi T_{\mu\nu}$$

$$g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$$
Flat metric
Small perturbation
$$h_{\mu\nu} \ll 1$$

$$+ \frac{\partial^2}{\partial x_i^2} h_{\mu\nu} = 0$$

 $h_{\mu\nu} = \varepsilon_{\mu\nu} \exp[i(\omega_{GW}t - \mathbf{k} \cdot \mathbf{r})]$

A. Allocca - Visite Master2 P3TMA

 $\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)$

28/10/2016

Gravitational Waves polarization

$$h_{\mu\nu} = \varepsilon_{\mu\nu} \exp[i(\omega_{GW}t - \mathbf{k} \cdot \mathbf{r})]$$

2 degrees of freedom

+ polarization

$$\varepsilon_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h^{+} & h^{\times} & 0 \\ 0 & h^{\times} & -h^{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

× polarization

<:····

28/10/2016

For a wave travelling in the z direction...

A. Allocca - Visite Master2 P3TMA

Gravitational Waves sources

Any acceleration that is not spherically or cylindrically symmetric will produce a gravitational wave.

The amplitude of gravitational waves is proportional to the quadrupole moment of the masses which produce them through the

constant $G/C^4 \approx 10^{-45} \text{ N}^{-1}$

$$h_{jk}^{TT} = \frac{2G}{rc^4} \left(\frac{d^2 I_{jk}^{TT}}{dt^2}\right)_{t-r/c}$$

$$I_{jk} = \int d^3 \overrightarrow{x} \rho \left(x_j x_k - \frac{1}{3} |\overrightarrow{x}|^2 \right)$$

Gravitational Waves sources

Coalescence of binaries

- NS-NS
- NS-BH
- BH-BH

Hubble Space Telescope Wide Field Planstary Camera 2 Prime Periodic sourcesPulsar

Supernovae explosions

Echoes from the Big Bang (stochastic background)

An example of a Waveform

28/10/2016

A. Allocca - Visite Master2 P3TMA

Einstein and gravitational waves: also the genius has doubts...

- 1915: published the theory of GR
- 1916: first paper about GW, but there's a mistake!
- 1918: Computes for the first time the effect of GW
- 1936: Published with Rosen the paper: "Do Gravitational Waves Exist?"
- 1937: Finally gets convinced about GW existence

Outline

- The origin of Gravitational Waves and their effect on the matter
- Gravitational Waves detection
- The Virgo detector
- The detector network

Gravitational Waves and their detection

Effect of a GW on free-falling masses

How small is "small"?

Let's suppose you pour a glass of wine into the ocean.

➤What is the rise of sea-level you get?

How big is the effect of a gravitational wave compared to the atomic size?

We need a (good) ruler

Joseph Weber c. 1965

measure oscillations in mechanical resonators Monitored the amplitude of oscillation of the **fundamental mode of the bar**. A gravitational wave signal of suitable strength would be *expected to change the amplitude or phase of the oscillations in the bar*

J. Weber Phys. Rev. Lett. 18, 498

28/10/2016

A. Allocca - Visite Master2 P3TMA

Interferometer

Use an interferometer as a transducer: convert displacements into optical signals

28/10/2016

A. Allocca - Visite Master2 P3TMA

22

A challenge against noise

Increase the sensitivity

Reduce the noise

28/10/2016

A challenge against noise

Increase the sensitivity

Reduce the noise

28/10/2016

Increase the sensitivity

A. Allocca - Visite Master2 P3TMA

Very weak amplitude: $h \approx 10^{-21}$ The distance between two mathematical sectors of the sector

Use an interferometer as a transducer: convert displacements into optical signals

 $\delta L \propto h L$

 $\delta L \propto h L$

Use an interferometer as a transducer: convert displacements into optical signals

 $\delta\phi=G\,\delta L$

 $\delta L \propto h L$

Use an interferometer as a transducer: convert displacements into optical signals

 $\delta\phi=G\,\delta L$

 $\delta L \propto h L$

Use an interferometer as a transducer: convert displacements into optical signals

 $\delta\phi=G\,\delta L$

Crucial: high **contrast defect**

$$C = \frac{P_{BF} - P_{DF}}{P_{BF} + P_{DF}}$$

Limit effects preventing the perfect destructive interference between recombining beams

Interferometer working point: **dark fringe** condition (to be more sensitive to power variation due to a Gravitational Wave)

28/10/2016

A challenge against noise

Increase the sensitivity

Reduce the noise

28/10/2016

28/10/2016

A. Allocca - Visite Master2 P3TM

Meet the Villain: Noise!

Doesn't matter how sensitive you are, if your noise is billions of times your signal

Credits: Stephen Fairhurst

Outline

- The origin of Gravitational Waves and their effect on the matter
- Gravitational Waves detection
- The Virgo detector
- The detector network

GW Detectors - Noise

Limiting noises at different frequency ranges:

28/10/2016

- Low frequency range:
- dominated by *seismic noise*

The Superattenuator

Reduces mirrors seismic vibrations by a factor 10¹²

Quantum noise Gravity Gradients

- Low frequency range:
 - gas pressure noise

Ultra High Vacuum

It has a total volume of 7000 m³ and is kept at a pressure of 10⁻⁷ mbar : the biggest ultra-A. Allocca - Vis**highevacuum system in Europe!**

28/10/2016

- Mid frequency range:
 - Dominated by thermal noise of mirror coatings and suspensions
- Reduced by:
 - *Larger beam spot* (sample larger mirror surface)
 - Mirror coatings engineered for low losses

28/10/2016

A. Allocca - Visite Master2 P3TMA

Mirrors

- High frequency range:
 - Dominated by laser shot noise. Improved by increasing the power: >100W input, ~1 MW in the cavities
- Requires:
 - New laser amplifiers (solid state, fiber)
 - Heavy, low absorption optics (substrates, coatings)
 - Sophisticated systems to correct for thermal aberrations

28/10/2016

A. Allocca - Visite Master2 P3TMA

Advanced Virgo detector

Credits: Marco Kraan - Nikhef

28/10/2016

The first "Advanced mirror": the Beam Splitter

isite Master₂ P₃TMA

550 mm in diameter, 65 mm thick for a total weight of about 34 kg

Outline

- The origin of Gravitational Waves and their effect on the matter
- Gravitational Waves detection
- The Virgo detector
- The detector network

Competition & Collaboration (2015)

Competition & Collaboration (2015)

GW Detectors – The network

A world-wide effort...

- Identify GW source direction
- Increase statistic reliability by coincident detection

GW: a new era for astronomy

28/10/2016

The whisper of the Universe

Thanks for your attention

Further reading

- <u>Paper on the detection</u>: LSC and VIRGO -Observation of Gravitational Waves from a Binary Black Hole Merger <u>Phys. Rev. Lett. 116, 061102 (2016)</u> -<u>http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102</u>
- <u>Companion papers</u>: <u>https://www.ligo.caltech.edu/page/detection-companion-papers</u>
- <u>Open data</u>: <u>https://losc.ligo.org/events/GW150914/</u>
- <u>On GW detection with interferometer</u>: P. Saulson <u>http://www.slac.stanford.edu/cgi-wrap/getdoc/ssi98-005.pdf</u>
- <u>On Advanced Virgo detector</u>: The VIRGO collaboration Advanced Virgo: a secondgeneration interferometric gravitational wave detector <u>http://arxiv.org/pdf/1408.3978.pdf</u>
- <u>On aLIGO detectors</u>: LSC Advanced LIGO <u>http://iopscience.iop.org/article/10.1088/0264-9381/32/7/074001/meta</u>
- <u>On close-future evolution of GW detectors</u>:VIRGO, LSC Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo <u>http://relativity.livingreviews.org/Articles/lrr-2016-1/</u>

