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Gravitational waves: 
sources and properties 
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General relativity in a nutshell 
 “Spacetime tells matter how to move; matter tells spacetime how to curve”  
                                     John Archibald Wheeler (1990) 
    A massive body warps the spacetime fabric 
    Objects (including light) move along paths 
      determined by the spacetime geometry 
  
 Einstein’s equations 
 
 
  
   → In words: Curvature = Matter 
 
 Einstein tensor Gµν: manifold curvature 
 Stress-energy tensor Tµν: density and flux of energy and momentum in spacetime 
 Equality between two tensors 
   → Covariant equations 
 Need to match Newton’s theory for weak and slowly variable gravitational fields 
    → Very small coupling constant: the spacetime is very rigid 
 Non linear equations: gravitational field present in both sides 4 
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Newtonian gravitation and black holes 
 Newton 1687: Law of universal gravitation 
    Apply both on Earth and to celestial objects 
    Demonstrate Kepler laws 
    For centuries, predictions match very well the observations 
      → Neptune discovery (1846): 
           Urbain Le Verrier (mathematical computation) 
           & Gottfried Galle (observation) 
 
 Escape velocity, in case one mass is 
   much larger than the other one (M>>m) 
 
 What if ve = c? 
    Stars with a gravitational field so strong that their light would be trapped 
    Context: the corpuscular theory of light 
      → John Mitchell (1783) 
      → Pierre-Simon de Laplace (1796) 
 
→ Issue forgotten until the publication of Einstein’s general relativity (1915) 
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Schwartzschild Radius 
 Newtonian escape velocity:   
 
 
 Schwartzschild radius RS (1916): 
    RS(M) such as ve = c 
   → Very small for « usual » celestial objects 
         Planets, stars 
  
 Compacity 
 
 
 
 
 
 Beware: compact and dense are two different things! 
    Black hole « density » 
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Black holes 
 Spacetime region in which gravitation is so strong that nothing, 
   not even light, can escape from inside its horizon 
 
 Formed by the collapse of massive stars running out of fuel 
  
 Can grow by accreting matter 
    Supermassive black holes are though to exist inside most galaxies 
      → E.g. Sagittarius A* in the center of the Milky Way 
 
 Characterized by three numbers (Kerr, 1963) 
    Mass 
    Spin 
    Electric charge 
 
 Black hole horizon 
    Once crossed there’s no way back 
    Can only grow with time 
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Gravitational waves (GW) 
 One of the first predictions of general relativity (1916) 
    Accelerated masses induce perturbations of the spacetime 
     which propagate at the speed of light 
    Linearization of the Einstein equations (gµν = ηµν + hµν, |hµν| << 1) 
      leads to a propagation equation far from the sources 
 
 Traceless and transverse (tensor) waves  
    2 polarizations: « + » and « × » 
      → See next slide for the interpretation of these names 
 
 Quadrupolar radiation 
    Need to deviate from axisymmetry to emit GW 
    No dipolar radiation – contrary to electromagnetism 
 
 GW amplitude h is dimensionless 
    Scales with the inverse of the distance from the source 
    GW detectors sensitive to amplitude (h∝1/d) and not intensity (h2∝1/d2) 
      → Important to define the Universe volume a given detector is sensitive to 
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Effect of gravitational waves on test masses 
 GW: propagating perturbation of the spacetime metric 
    Acts on distance measurement between test masses (free falling)  
 
 
 
 
 
 

 Effect of the two GW polarizations on a ring of free masses 
 
 

    « + » polarization 
 
 
    
 
    « × » polarization 
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Do gravitational waves exist? 
 Question (officially) solved since February 11 2016! 
    But was very relevant beforehand … and long-standing in the community 
 
 Controversy for decades 
    Eddington, 1922: « GW propagate at the speed of thought » 
    1950’s: general relativity is mathematically consistent (Choquet-Buhat) 
 
 Indirect evidence of the GW existence: 
   long-term study of PSR B1913+16 – see next slide 
    Galactic (6.4 kpc away) binary system 
    Two neutron stars, one being a pulsar 
 
 Discovered by Hulse and Taylor in 1974 
    Nobel prize 1993 
 
 Laboratory for gravitation study 
    GW in particular 
      → Taylor & Weisberg, Damour 
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PSR B1913+16 
 Galactic (6.4 kpc away) binary system 
    Two neutron stars, one being a pulsar 
    
 Discovered by Hulse and Taylor in 1974 
    Nobel prize 1993 – for the discovery 
 
 System parameters and orbital motion 
   measured accurately 
   → Laboratory for gravitation studies 
 
 GW: long-term studies of the orbital motion 
    Taylor & Weisberg, Damour 
 
 System slowly loosing energy due to GW 
    Orbital motion “accelerates” accordingly 
      → 76.5 µs / year – current period: P = 7.75 h 
    Compact stars get “closer”: 3.5 m / year 
      → Coalescence in… 300 000 000 years 
    Virgo and LIGO « could » see that final part!?!?!? 11 
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Sources of gravitational waves 
 Einstein quadrupole formula (1916) 
    Power radiated into gravitational waves 
      Q: reduced quadrupole momenta  
      
 Let’s rewrite this equation introducing some typical parameters of the source  
    Mass M, dimension R, frequency ω/2π and asymmetry factor a 
 
    One gets                                        and  
 

 
 Using ω~v/R and introducing RS, one gets: 
 

→ A good GW source must be 
    Asymmetric 
    As compact as possible  
    Relativistic 
 

 Although all accelerated masses emit GW,  no terrestrial source can be detected 
   → Need to look for astrophysical sources (typically: h~10−22 ÷ 10−21) 12 
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A diversity of sources 
 Rough classification 
    Signal duration 
    Frequency range 
    Known/unknown waveform 
    Any counterpart (E.M., neutrinos, etc.) expected? 
 

 Compact binary coalescence 
    Last stages of the evolution of a system like PSRB 1913+16 
      → Compact stars get closer and closer while loosing energy through GW 
    Three phases: inspiral, merger and ringdown 
      → Modeled via analytical computation and numerical simulations 
    Example: two masses M in circular orbit (fGW = 2 fOrbital) 
 
 
 
 Transient sources (« bursts ») 
    Example: core collapses (supernovae) 
 

 Permanent sources 
    Pulsars, Stochastic backgrounds 13 
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Gravitational wave spectrum 
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Gravitational wave detectors 
 Ground-based 
    Resonant bars (Joe Weber’s pioneering work) 
      → Narrow band, limited sensitivity: not used anymore 
    Interferometric detectors 
      → LIGO, Virgo and others 
      → 2nd generation (« advanced ») detectors started operation 
           Design studies have started for 3rd generation detectors (Einstein Telescope) 
    Pulsar Timing Array (http://www.ipta4gw.org)  
      → GW would vary the time of arrival pulses emitted by millisecond pulsars 
 

 In space  
    Future mission eLISA (https://www.elisascience.org, 2030’s) 
    Technologies tested by the LISA pathfinder mission, sent to space last December 
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Gravitational wave 
interferometric 

detectors 
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1916-2016: a century of progress 
 1916: GW prediction (Einstein) 
 
 
 
 1963: rotating BH solution (Kerr)  
 
 
 
 
 
 
 
 
 1990’s: CBC PN expansion 
   (Blanchet, Damour, Deruelle, 
   Iyer, Will, Wiseman, etc.) 
 
 2000: BBH effective one-body 
   approach (Buonanno, Damour) 
 
 2006: BBH merger simulation 
   (Baker, Lousto, Pretorius, etc.) 
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1957 Chapel Hill Conference      (Bondi, Feynman, Pirani, etc.) 

 1960’s: first Weber bars 
 
 1970: first IFO prototype (Forward) 
 1972: IFO design studies (Weiss) 
 1974: PSRB 1913+16 (Hulse & Taylor) 
 
 1980’s: IFO prototypes (10m-long) 
   (Caltech, Garching, Glasgow, Orsay) 
 
 End of 1980’s: Virgo and LIGO proposals 
 
 1990’s: LIGO and Virgo funded 
 
 2005-2011: initial IFO « science » » runs 
 
 2007: LIGO-Virgo Memorandum 
             Of Understanding 
 
 2012 : Advanced detectors funded 
 
 2015: First Advanced LIGO science run 
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The Advanced Virgo detector scheme 
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The Advanced Virgo detector revealed 
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 Animation by Marco Kraan, NIKHEF 
    https://www.youtube.com/watch?v=6raomYII9P4  

https://www.youtube.com/watch?v=6raomYII9P4


Noise & sensitivity 
 Noise: any kind of disturbance which pollutes the dark fringe output signal 
 

 Detecting a GW of frequency f ↔ amplitude h « larger » than noise at that frequency 
 

 Interferometers are wide-band detectors 
    GW can span a wide frequency range 
    Frequency evolution with time is a key feature of some GW signals 
      → Compact binary coalescences for instance  
 

 Numerous sources of noise 
    Fundamental 
      → Cannot be avoided; optimize design to minimize these contributions 
    Instrumental 
      → For each noise, identify the source; then fix or mitigate 
      → Then move to the next dominant noise; iterate… 
    Environmental 
      → Isolate the instrument as much as possible; monitor external noises 
 

 IFO sensitivity characterized by its amplitude spectrum density (ASD, unit: 1/√Hz) 
 

    Noise RMS in the frequency band [fmin;fmax] = 20 ∫
fmax

min

f

f
2 df (f)ASD



Main interferometer noises 
Thermal noise  

(coating + suspension) 

Radiation 
pressure  

fluctuation 

Residual gas 
(phase noise) 

 Seismic vibration 
 Newtonian noise 

Stray-light 

Shot noise 

Residual 
laser noise 
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Sensitivity improvement 
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 A multi-step process 
 
 
 
 
 
 
 
 
 
 
 
 Quantum noise dominant at low (radiation pressure) & high (shot noise) frequencies 
   → R&D ongoing on frequency-dependent light squeezing 
 Coating thermal noise dominant in between 
 
 Low frequency sensitivity ultimately limited by Newtonian noise 
    Stochastic gravitational field induced by surface seismic waves 
      → Either active cancellation or go underground 
 



A worldwide network 
of gravitational wave 

interferometric detectors 
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Interferometer angular response 
 An interferometer is not directional: it probes most of the sky at any time 
    More a microphone than a telescope! 
 
 The GW signal is a linear combination of its two polarisations  
                           h(t) = F+(t) × h+(t) + F×(t) × h×(t) 
    F+ and F× are antenna pattern functions which depend on 
      the source direction in the sky w.r.t. the interferometer plane 
      → Maximal when perpendicular to this plane 
      → Blind spots along the arm bisector (and at 90 degres from it) 
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A network of interferometric detectors 
 A single interferometer is not 
   enough to detect GW 
    Difficult to separate a signal 
      from noise confidently 
    There have been unconfirmed 
      claims of GW detection 
 
→ Need to use a 
     network of interferometers 
 

 Agreements (MOUs) between the 
   different projects – Virgo/LIGO: 2007 
    Share data, common analysis, 
      publish together 
 

 IFO: non-directional detectors; 
   non-uniform response in the sky 
 

 Threefold detection: reconstruct 
    source location in the sky 25 

t
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t
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t
Virgo

 SOURCE 

GHOST 

IFO 
Pair 

∆t max 
(ms) 

V-H 27.20 

V-L 26.39 

H-L 10.00 



A network of interferometric detectors 
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LIGO Hanford 
Washington State, USA 

LIGO Livingston 
Louisiana, USA 

Virgo Cascina (near Pisa), Italy 



Exploiting multi-messenger information 
Transient GW events are energetic 
    Only (a small) part of the released energy is converted into GW 
      → Other types of radiation released: electromagnetic waves and neutrinos  
 

 Astrophysical alerts ⇒ tailored GW searches 
    Time and source location known ; possibly the waveform  
      → Examples: gamma-ray burst, type-II supernova 
    

 GW detectors are also releasing alerts to a worldwide network of telescopes 
    Agreements signed with ~75 groups – 150 instruments, 10 space observatories 
 
 
 
 
 
 
 
 
 Low latency h-reconstruction and data transfer between sites 
    Online GW searches for burst and compact binary coalescences 27 



The Advanced LIGO 
«Observation 1» Run 
(2015/09 – 2016/01) 
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aLIGO O1 Run: Observing time 
 September 2015 – January 2016 
    GW150914 showed up a few days before the official start of O1, 
      during the « Engineering Run 8 » 
   → Both interferometers were already working nominally 
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aLIGO O1 Run: Sensitivity 
 Sensitiviy much improved with respect to the initial detectors 
    Factor 3-4 in strain 
      → Factor 30-60 in volume probed 
 

 Gain impressive at low frequency – where both signals are located  
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aLIGO O1 Run: GW150914-like horizon 
 Sky-averaged distance up to which a given signal can be detected 
    In this case a binary black hole system with the measured GW150914 parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Only depends on the actual sensitivity of the interferometer 
    Online monitoring tool used during data taking 
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aLIGO O1 Run: “VT” figure of merit 
 Cumulative time-volume probed by the instruments 
   → Expected number of sources (given a model) 
    Unit: Mpc3.year  
    This slide: 1.4-1.4 M « standard » 
      binary neutron star system case 
 
 Mixes sensitivity and duty cycle information  
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GW150914   
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September 14 2015, 11:51 CET 
 Signal detected in both LIGO detectors, with a 7 ms delay 
    Short (< 1 s) 
    Very strong/significant 
    Signal expected from a binary black hole coalescence 
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Event labelled 
GW150914 



February 11 2016, 16:30 CET 
 
 
 
 
 
 
 
 
 
 
 

 Simultaneous press conferences in Washington DC, Cascina (Virgo site, Italy), 
                                                            Paris, Amsterdam, etc. 
 

 Detection paper, accepted on PRL, made available online 
    Published by the LIGO and Virgo collaborations 
    http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102  
 

 Several « companion » papers online at the same time – or shortly thereafter 
    See full list at https://www.ligo.caltech.edu/page/detection-companion-papers     35 
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In between these two dates… 
 Make sure that the signal was not a simulated waveform 
    For instance a « blind » injection – or someone hacking LIGO! 
 
 Check the detector status at/around the time of the event  
  
 « Freeze » the detector configuration 
    To accumulate enough data to assess the signal significance 
 
 Rule out the possibility of environmental disturbances producing that signal 
 
 Run offline analysis to confirm/improve the online results 
 
 Extract all possible science from this first/ unique (so far) event 
 
 Write detection paper and the associated « companion » papers 
    Detection paper had to be accepted prior to making the result public 
 
 Keep GW150914 secret, hope for the best 
    Any of the items above could have been a showstopper 36 



GW150914: raw power  
 Blue:     aLIGO Livingston 
   Yellow: aLIGO Hanford  
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GW150914: calibrated h(t) 
 Control signals used to 
   recover the strain signat 
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GW150914: band-pass filtering 
 20 Hz → 500 Hz 
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GW150914: whitened data 
 Data weighted by the noise 
   level in frequency space 
   → Whitened data have 
        a flat PSD 
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GW150914: spectrograms 
 Time-frequency maps 

41 

Signal 



Compact binary coalescence search 
 Well-predicted waveform 
    → Matched-filtering technique (optimal) 
          Noise-weighted cross-correlation of 
            data with a template (expected signal) 
 

 Parameter space covered by a 
    template bank 
    Analytical for NS-NS, BH-NS 
    Analytical + numerical for BH-BH 
    Parameters: mass and spin 
      of the initial black holes 
      → ~250,000 templates in total 
 

 Look for triggers from the two IFOs 
   using the same template and coincident in time 
    Check matching between signal and template 
   

 Offline search 
    Part of the parameter space searched online 
    Two independent offline pipelines 42 

FT of the data Signal template 

Noise power spectral density 



GW150914 signal strong enough to be immediately identified on spectrograms 

Hanford Livingston 

Burst search 
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 Search for clusters of excess power (above detector noise) in time-frequency plane 
    Wavelets 
 
 
 
 
 
 
 
 
 
 

 Chirp-like shape: frequency and amplitude increasing with time 
 
 Coherent excess in the two interferometers 
    Reconstructed signals required to be similar 
 
 Efficiency similar to (optimal) matched filtering for binary black hole – short signal 
    Online last September for O1 



Rapid response to GW150914 
 2015/09/14 11:51 CET: event recorded – first in Livingston, 7 ms later in Hanford 
 

 3 minutes later : event flagged, entry added to database, contacts notified  
    Online triggers important in particular for searches of counterparts 
 

 1 hour later: e-mails started flowing within the LIGO-Virgo collaboration 
 
 
 
 
 
 20 minutes later: no signal injected at that time 
    Confirmed officially at 17:59 that day – blind injections useful to test pipelines 
 

 10 minutes later: binary black hole candidate 
 

 25 minutes later: data quality looks OK in both IFOs at the time of the event 
 

 15 minutes later: preliminary estimates of the signal parameters 
    False alarm rate < 1 / 300 years: a significant event! 
 

 Two days later (09/16, 14:39 CET): alert circular sent to follow-up partners 44 



 Detector configuration frozen to integrate enough data for background studies 
    ~40 days (until end of October) corresponding to 16 days of coincidence data 
   → Steady performances over that period 
 

 Tens of thousands of probes monitor the  
   interferometer status and the environment 
    Virgo:    h(t) ~ 100 kB/s 
                 DAQ ~ 30 MB/s 
 

 Help identifying couplings 
   with GW channel  
    Quantify how big a disturbance should 
      be to produce such a large signal 
    Not to mention the distinctive shape 
      of the GW150914 signal 
 

 Extensive studies performed 
    Uncorrelated and correlated noises 
    Bad data quality periods identified and vetoed 
   → Clear conclusions:  nominal running, no significant environmental disturbance 

Data quality 
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 Studies show that GW150914 is not due to issues with the interferometer running, 
   nor the reflection of environmental disturbances (correlated or not) 
   → How likely is it to be due to « expected » noise fluctuations? 
         Assess signal significance! 
 
 Input: 16 days of coincidence data  
   → Time shift method to generate a 
         much larger background dataset 
 
 Reminder: real GW events are shifted 
   by 10 ms at most between IFOs 
    Light travel time over 3,000 km 
 
 By shifting one IFO datastream by a 
   (much) larger time, one gets new 
   datastreams in which « time » 
   coincidence are necessarily due to noise 
    16 days of coincident data → tens of thousands years of background « data »  

Background estimation 
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Signal significance – CBC analysis 
 x-axis: detection 
   statistic used to 
   rank events 
   (the « SNR ») 
    GW150914: 
      strongest 
      event (true in 
      both IFOs) 
 

 Observed 
   (zero-lag) 
   events 
  

 Solid lines: 
   2 background 
   estimations 
   (from time-lag) 
 

 SNR ~ 23.6; false alarm rate < 1 event / 203,000 years  
   false alarm probability  < 2×10−7 (> 5.1 σ) 47 



Signal significance – Burst analysis 
 Similar plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 False alarm rate < 1 event / 67,400 years 
   False alarm probability  < 2×10−6  (> 4.6 σ) 
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Why two black holes? 
 Result of matched filtering! 
    Excellent match between 
      the best template and the 
      measured signal 
 

 Two massive compact objects 
   orbiting around each other at 
   75 Hz (half the GW frequency), 
   hence at relativistic speed, 
   and getting very close before 
   the merging: only a few RS away! 
     

→ Black holes are the only 
     known objects which can 
     fit this picture  
   

 About 3 MSun radiated in GW 
 

 The « brighest » event ever seen 
    More powerful than any gamma-ray burst detected so far 
    Peak power larger than 10 times the power emitted by the visible Universe 49 



Simulation of the coalescence 
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 15 parameters total 
    Initial masses, initial spins, final mass, final spin, 
     distance, inclination angle + precession angle (if exists) 
 

 Bayesian inference 
    Probability density function for each parameter: mean value + statistical errors 
 
 
 
 

 θ: Parameters 
 d: Data 
 H: Model 
 
 Compare results 
   from two models 
   → Systematic errors  

θJN 

m1 

m2 dL 

S1 

S2 

Parameter estimation 
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Parameter estimation 
 Impact of the black hole parameters on the waveform 
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Main results 
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Individual 
masses  

Final BH mass 
and spin 

m1 = 36+5
-4 M⊙  

m2 = 29+4
-4 M⊙  

Mf = 62+4
-4 M⊙  

af = 0.67+0.05
-0.07 

Final black hole has about 
the area of Iceland 



Main results 
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Degeneracy luminosity distance / inclination angle 
    Face-on binary favored   
    Luminosity distance ~ 400 Mpc – large error bar 

Waveform reconstruction 
→ Excellent agreement between 
     matched filtering (BBH  
     template) and wavelet (burst 
     reconstruction) 



Testing general relativity 
 Previous tests : solar system, binary pulsars, cosmology 
    Weak fields, linear regime … 
 
 With GW150914 : strong field, non-linear regime, relativistic velocities 
   → New tests ! 
 
 Simplest test : data substracted with closest predicted waveform 
    Residuals are compatible with Gaussian noise within measurement accuracy 
      → Deviations from GR constrained to be less than 4% 
 
 Search for deviations from GR prediction 
   for PN expansion of the inspiral signal 
   phase ( xPN  (v/c)2x ) 
    Weak constraints but the best up to now 
      except lowest order (few number of cycles) 
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Testing general relativity 
 Consistency tests 
    The reconstructed waveform has 3 distinct regimes: 
      inspiral + merger + ringdown (IMR) 
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Consistency of parameters 
from different regimes 

(90% confidence region) 

Best ringdown parameters 
f~250Hz, τ~4ms 

(Damped sinusoid model) 
(4 different start times – offsets 

from the merging time) 

IMR 



Bound on the graviton mass 
 If the graviton were massive 
    Dispersion relation 
    Propagation velocity would depend on energy 
 
   → Additional terms in the phase of the inspiral signal  
        where D is the distance, z the redshift and 
 

                          is the graviton Compton wavelength 
 
 
 GW150914 data:                        or equivalently 
    Best limit! 
 
 Best previous limit in solar system tests (Mars) :  
    Yukawa correction to the Newtonian potentiel  
 
 
 
 Binary pulsars tests: not competitive  57 
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Skymap 
 Sky at the time of the event 
 
 Skymap contoured in 
   deciles of probability 
 
 90% contour : 
   ~ 590 degres2 
    Full Moon: 0.5 degres2 

 
 View is from the South 
    Atlantic Ocean, North at 
    the top, with the Sun rising 
    and the Milky Way 
    diagonally from NW to SE 
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Looking for 
GW150914 

counterparts  Sky coverage 
 
 
 
 
 
 
 
 
 

 Observation timeline: no counterpart found – none expected for a binary black hole  
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GW151226   
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GW151226 
 Observed on ‘Boxing Day’ 
    Online trigger from the matched filtering analysis 
    Not detected by the burst online search 
    Detailed studies delayed by the completion of the GW150914 analyses 
 
 Not all GW signals 
   visible to the naked eye! 
 
 Another binary black 
   hole coalescence 
 
 Lighter black holes 
    14 and 8 M 
 
 Smaller amplitude 
 More cycles in the 
   detector bandwidth 
→ Matched filtering mandatory 
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GW151226 
 2nd largest event recorded 
    After GW150914 
 
 A third candidate: 
   LVT151012 
    Lower statistical 
      significance 
   → « Source » 
        much further 
        away (~1 Gpc) 
 
 In this plot, 
   GW150914 
   has been removed 
   to estimate the bkg 
   as it is a true signal 
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LVT151012 



GW151226 
 Excellent agreement between the different reconstructed waveforms  
    analytical computation (post-Newtonian expansion, in grey) 
    numerical relativity (in red) 
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In summary: two events, one candidate 
 Black hole binary systems 
 
 No other GW source observed so far 
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Conclusions 
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Prospects 

 Soon: a ground-based detector network 
    larger and 
    more sensitive 
 
 
 
 
 
 
 
 
 
 
 
 
 
→ On can expect to detect (much) 
     more GW signals soon 
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Probabilities that the number 
of detections exceeds 
    2 
    10 
    40 

OX : « Observation » 
Run number X 



Outlook 
 The network of advanced gravitational wave interferometers is taking shape 
    The two aLIGO detectors started taking data last September and detected 
      the first two gravitational wave signals (GW150914 and GW151226) 
    Virgo is completing its upgrade and is fully committed to joining LIGO asap 
    KAGRA should then join the network in 2018 
    And possibly a third LIGO detector (LIGO-India) some years later 
 
 Sensitivity already good enough to detect gravitational waves  
    Improvements expected in the coming years 
    R&D activities already ongoing for 3rd generation instruments 
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GW detector peak sensitivity evolution vs. time 
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Resonant bars 
Interferometers 
Future 

R. Adhikari 
Rev. Mod. Phys. 86, 121 (2014) 

aLIGO O1 
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