Electromagnetic follow-up of gravitational wave transients

First results and perspectives

M. Razzano
University of Pisa \& INFN-Pisa

On behalf of the LIGO Scientific Collaboration and the Virgo Collaboration

$$
\text { EGO - } 28 \text { October } 2016
$$

The multiwavelength sky

M31 (Andromeda Galaxy) in visible...

APOD, 26 Giugno 2013

...and at other wavelengths

The multi-messenger sky today

Cosmic rays > 57 Eev (Auger, 2007)

Neutrinos > 30 Tev (Icecube, 2013)

The multi-messenger sky today

Cosmic rays > 57 Eev (Auger, 2007)
Neutrinos > 30 Tev (Icecube, 2013)

A multi-messenger sky

Gamma rays > 0.1 GeV (Fermi-LAT, 2013)

Cosmic rays > 57 Eev (Auger, \square
Neutrinos > 30 Tev (Icecube, 2013)

The multi-messenger sky today

The new frontiers of multimessenger astronomy

- Complementary information:
- GW \rightarrow mass distribution
- EM \rightarrow emission processes, acceleration mechanisms, environment
- Neutrinos \rightarrow hadronic/nuclear processes, etc
- Give a precise (arcmin/arcsecond) localization
- Localize host galaxy of a merger
- Identify an EM counterpart with timing signature (e.g. pulsars)
- EM follow-up is crucial
- Provide a more complete insight into the most extreme events in the Universe
- Explore the physics of the progenitors (mass, spin, distance..) and their environment (temperature, density, redshift..)

Expected multimessengers sources detectable by LIGO/Virgo

- Coalescence of compact binary systems (NSs and/or BHs)
- Known waveforms (template banks)
- $\mathrm{E}_{\mathrm{gw}} \sim 10^{-2} \mathrm{Mc}^{2}$
- Core-collapse of massive stars
- Uncertain waveforms
- $\mathrm{E}_{\mathrm{gw}} \sim 10^{-8}-10^{-4} \mathrm{Mc}^{2}$

Ott, C. 2009

- Rotating neutron stars
- Quadrupole emission from star's asymmetry
- Continuous and Periodic
- Stochastic background
- Superposition of many signals (mergers, cosmological, etc)
- Low frequency

Multimessenger Physics - Mergers

Mergers of binary objects (NSs and/or BHs)

- Believed to be progenitors of short GRBs
- Follow-up observations, find EM counterparts
- Populations of compact objects
- Evolution
- Mass function

Multimessenger: the case of GRB

Gamma Ray Bursts are intense flashes of gamma rays Very Energetic (up to $\mathrm{E}_{\text {iso }} 10^{53} \mathrm{erg}$)

X ray and gamma rays

Central engine
Shocks

Multimessenger: the case of GRB

Fermi GBM GRBs in first six years of operation

Science case for EM follow-up: the GRB connection

Short GRBs (<2 s)

Gamma Ray Bursts are intense flashes of gamma rays Multimessenger is key to study progenitors

believed to be associated

 with mergers

Believed to be associated with core-collapse of massive star

Multimessenger Physics - Supernovae

Stellar explosions

- What is the physical mechanisms behind Supernovae?
- What is the structure/asymmetry during collapse?
-Many inputs beyond GW are required

Multimessenger Physics - Neutron Stars

Continuous Waves

- Non-linear instabilities and NS evolution
- Explore the nature of the NS crust
- Glitch

EM follow-up: past and present

- Past experiences (2009-2010)
- ~30 min latency, optical telescopes+Swift
- Centralized organization
- Now (2015-)
- Few mins latency
- GCN alerts for EM partners (MoU)
- Broadband coverage

GW alert
\longrightarrow Sky localization \longrightarrow EM follow-up

EM event	EM band	Timescale
Prompt emission	Gamma rays	<seconds
Afterglow	X-ray, optical, radio	Hours-days

A needle in a haystack: an example from the past

Find a counterpart is not easy! -EM Transients might be

- Fast
- Faint
- Too many
-Findind counterparts of GRBs was very difficult
-For GWs, the situation is worse...

The era of Advanced GW detectors

LIGO-Livingston (4 km)

Advanced LIGO + Advanced Virgo First joint run in 2016 (O2)

Sky Localization of GW transients

- "Triangulation" using temporal delays
- Depends on the SNR
- Low SNR \rightarrow large error box (tens - hundreds sq deg)
- Wide-fov telescopes are required!

0	1	2	3

Posterior probability density $/ \mathrm{deg}^{-2}$

Abbott+16, LRR 19,1

BNS system, SNR~13.2
LALINFERENCE (left), BAYESTAR (right)

Sky Localization

BNS, 80 Mpc
 2016-17

2019+
BNS, 160 Mpc

2022+
2017-18
$\rightarrow 90 \%$ CL
$X \rightarrow$ No detection

EM follow-up : key challenges

-What is the best observing strategy?

- Scan the full error box?
- Look only to specific regions (e.g. potential galaxy hosts?
- How to identify the potential host?
- If there is more than one candidate...
- How can we uniquely identify it?
- How can models help us?

Why an EM follow-up program?

-EM follow-up is key to find counterparts (and do great science!)

- GW analysis and checks require time
- Need to avoid misinformation/rumors
- Encourage multiwavelength coverage

-EM follow-up program

- Standard MoU to share information promptly while mantaining confidentiality for event candidates
- GW alerts sent to partners through private GCN notices/circulars
- Once first few (>=4) detections, prompt alerts will be made public for high-significance detections (FAR<1/100 yrs)

-Status

- 80 groups have signed MoU with LIGO \& Virgo
- From radio to gamma rays
- Special LVC GCN Notices and Circulars with distribution limited to partners

LIGO and Virgo EM follow-up program

> Astronomical institutions, agencies and large/small groups of astronomers (20 countries)

I(P)VMRG LSG

In 2012, LVC agreed policy on releasing GW alerts
"Initially, triggers (partially-validated event candidates) will be shared promptly only with astronomy partners who have signed a Memorandum of Understanding (MoU) with LVC involving an agreement on deliverables, publication policies, confidentiality, and reporting.

After four GW events have been published, further event candidates with high confidence will be shared immediately with the entire astronomy community, while lower-significance candidates will continue to be shared promptly only with partners who have signed an MoU."

- First (2014), second (2015) and third (2016) open calls for participation in GW-EM follow-up program (last year) $\mathbf{8 0}$ MoUs signed
- http://www.ligo.org/scientists/GWEMalerts.php

First results on EM follow-up

First results on EM follow-up

Black Holes of Known Mass

GW150914 follow-up timeline

- $\mathrm{t}+\mathrm{few}$ minutes: cWB \& oLIB pipelines
- T+17 min - 14 hr (skymaps)
- T+2d: first alert (after many checks)
- T+3w (Oct 3): BBH identification
- T+4m (Oct 20) updated FAR (<1/100 yr)

| Initial GW
 Burst Recovery | Initial
 GCN Circular | Updated GCN Circular
 (identified as BBH candidate) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fermi GBM, LAT, MAXI, | | |
| IPN, INTEGRAL (archival) | | |

Abbott+16 (arXiv:1602.08492)

GW150914 sky maps

Localization pipelines

- cWB: constrained ML on sky grid
- LIB: bayesian inference
- BAYESTAR: triangulation (based on CBC pipelines, here offline)
- LALInference: full details

	Area $^{\mathrm{a}}$						Comparison $^{\mathrm{c}}$			
	10%	50%	90%	$\theta_{\mathrm{HL}}{ }^{\mathrm{b}}$		cWB	LIB	BSTR	LALInf	
cWB	10	100	310	43_{-2}^{+2}	-	190	180	230		
LIB	30	210	750	45_{-5}^{+6}	0.55	-	220	270		
BSTR	10	90	400	45_{-2}^{+2}	0.64	0.56	-	350		
LALInf	20	150	620	46_{-3}^{+3}	0.59	0.55	0.90	-		

[^0]

GW150914 coverage

- 25 teams involved
- 19 orders of magnitudes in wavelenghts
- Repointing (optical)
- Archival (X \& gamma)
- Deep follow-up (optical/radio)

Abbott+16 (arXiv:1602.08492)

X-rays and gamma rays

Facility/ Instrument	Band ${ }^{\text {a }}$	Depth ${ }^{\text {b }}$	Time ${ }^{\text {c }}$	Area (deg^{2})	Contained Probability (\%)					GCN
					cWB	LIB	BSTR ${ }^{\text {d }}$	LALInf		
Gamma-ray										
Fermi LAT	$\begin{aligned} & 20 \mathrm{MeV}- \\ & 300 \mathrm{GeV} \end{aligned}$	1.7×10^{-9}	(every $3 \mathrm{hr})$	-	100	100	100	100	18709	
Fermi GBM	$8 \mathrm{keV}-40 \mathrm{MeV}$	$\begin{gathered} 0.7-5 \times 10^{-7} \\ (0.1-1 \mathrm{MeV}) \end{gathered}$	(archival)	-	100	100	100	100	18339	
INTEGRAL	$75 \mathrm{keV}-1 \mathrm{MeV}$	1.3×10^{-7}	(archival)	-	100	100	100	100	18354	
IPN	$15 \mathrm{keV}-10 \mathrm{MeV}$	1×10^{-7}	(archival)	-	100	100	100	100	-	
X-ray										
MAXI/GSC	$2-20 \mathrm{keV}$	1×10^{-9}	(archival)	17900	95	89	92	84	19013	
Swift XRT	$0.3-10 \mathrm{keV}$	5×10^{-13} (gal.)	2.3, 1, 1	0.6	0.03	0.18	0.04	0.05	18331	
		$2-4 \times 10^{-12}$ (LMC)	$3.4,1,1$	4.1	1.2	1.9	0.16	0.26	18346	

- Fermi GBM: 1 candidate $\sim 1.9 \sigma, \sim 0.4 \mathrm{~s}$ (Connaughton+16)
- Fermi LAT : no candidates (Ackermann+16)
- INTEGRAL: no candidates (Sevechenko+16)
- Swift: candidates, but no new sources (Ewans+16)

Optical, IR, radio

- Optical

- Tiled and galaxy-oriented
- Tens of candidates, later observed deeper
- Candidates compatible with normal population of SN, AGN, etc..
- Radio coverage up to $t+4$ months

Optical									
DECam	i, z	$i<22.5, z<21.5$	3.9,5, 22	100	38	14	14	11	18344, 18350
iPTF	R	$R<20.4$	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337
KWFC	i	$i<18.8$	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	C	< 19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021
Pan-STARRS1	i	$i<19.2-20.8$	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla-QUEST	g, r	$r<21$	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	$i<19.1, v<17.1$	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	$u<19.8$ (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331
	u	$u<18.8$ (LMC)	3.4, 1, 1						18346
TAROT	C	$R<18$	2.8,5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	C	$r<21$	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST	r	$r<22.4$	2.9,6, 50	90	29	10	14	10	18336, 18397
Near Infrared									
VISTA	Y, J, K_{S}	$J<20.7$	4.8, 1,7	70	15	6.4	10	8.0	18353
Radio									
ASKAP	863.5 MHz	$5-15 \mathrm{mJy}$	7.5, 2, 6	270	82	28	44	27	18363, 18655
LOFAR	145 MHz	12.5 mJy	$6.8,3,90$	100	27	1.3	0.0	0.1	18364, 18424, 18690
MWA	118 MHz	200 mJy	3.5,2,8	2800	97	72	86	86	18345

GW151226 \& LVT151012
Abbot+16 (astroph-1606.04856)

GW151226 \& LVT151012

Abbot+16 (astroph-1606.04856)

Event Dt (HL, ms) Area of 90\% Prob (90\%) Distance

GW150914

GW151226
~1.1
~850
~ 440

LVT151012
~-0.6
~1600
~1000

Multimessenger: GW+neutrinos

- IceCube and ANTARES operational
- Search for coincident emission
- Joint detection would provide good angular resolution
- Results
- No neutrinos coincident with GW150914
- Within $500 \mathrm{~s}, 3(0)$ neutrinos detected
by IceCube(ANTARES), consistent with atmospheri neutrino
- Constrain the source $\rightarrow \mathrm{E}_{\text {vot }}<1 \mathrm{e} 52-1 \mathrm{e} 54$ erg

ANTARES+IceCube+LSC+Virgo (arxiv:1602.05411)

Future perspectives: the role of Virgo

Credit: LIGO (Leo Singer) /Milky Way image (Axel Mellinger)

Future perspectives: the role of Virgo

Not just Virgo/LIGO...

Einstein Telescope (3rd generation)

- more sensitive than Advanced Detectors
- Extend to lower frequency window (3-100 Hz)
- Complementary with eLISA sensitivity at very low frequency

Even more in future: eLISA science (2034-)

- Open 0.1 - 100 mHz window
- 3 spacecrafts, millions km separation)
- Main Topics
- Astrophysics of black holes and galaxy formation
- Merging massive black holes in galaxies at all distances
- Massive BHs swallowing matter
- known binary compact stars and stellar remnants
- known populations of more distant binaries
- probably other sources
- possibly relics of the extremely early Big Bang
- Test gravity in strong regime

Conclusions

- GW and photons provide complementary information
- Multimessenger observations extremely promising
- Multimessenger approach is key to study the most extreme objects in the Universe
- Natural laboratories to probe fundamental physics
- Transients (e.g. GRBs)
- Also, other sources (e.g. neutron stars)
- First GW events provided first tests for EM follow-up campaign
- Great synergy and coverage
- No expected EM emission from BBHs, but new interesting models arising
- Future
- Not just BBH: what about BNS/NSBH?
- Virgo contribution important to improve localization \& parameter estimation

Conclusions

- GW and photons provide complementary information
- Multimessenger observations extremely promising
- Multimessenger approach is key to study the most extreme objects in the Universe
- Natural laboratories to probe fundamental physics
- Transients (e.g. GRBs)
- Also, other sources (e.g. neutron stars)
- First GW events provided first tests for EM follow-up campaign
- Great synergy and coverage
- No expected EM emission from BBHs, but new interesting models arising
- Future
- Not just BBH: what about BNS/NSBH?
- Virgo contribution important to improve localization \& parameter estimation

Conclusions

- GW and photons provide complementary information
- Multimessenger observations extremely promising
- Multimessenger approach is key to study the most extreme objects in the Universe
- Natural laboratories to probe fundamental physics
- Transients (e.g. GRBs)
- Also, other sources (e.g. neutron stars)
- GW150914 provided a first test for EM follow-up campaign
- Great synergy and coverage
- Suggested interesting theoretical scenarios
- Future
- Not just BBH: what about BNS/NSBH?
- Order 1e5 galaxies: EM counterpart is key to understand the source
- Virgo contribution crucial to improve localization

A new, growing community* ready for the new challenges of the gravitational wave physics

[^0]: ${ }^{a}$ Area of credible level (deg^{2}). Note that the LALInference area is consistent with but not equal to the number reported in Abbott et al. (2016e) due to minor differences in sampling and interpolation.
 ${ }^{b}$ Mean and 10% and 90% percentiles of polar angle in degrees.
 ${ }^{c}$ Fidelity (below diagonal) and the intersection in deg^{2} of the 90% confidence regions (above diagonal).

