Détecter les Ondes Gravitationnelles 24 Février 2017, Visite IN2P3 Michel-Ange

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) European Gravitational Observatory (Consortium CNRS & INFN)

https://events.ego-gw.it/indico/conferenceDisplay.py?confId=50

I E G O GRAVITATIONAL OBSERVATORY

Plan

- La découverte en bref : GW150914
- La saga des ondes gravitationnelles
- Comment les détecter ?
 - Interféromètres géants suspendus
- L'événement GW150914
- Et maintenant ?
 - Une nouvelle fenêtre sur l'Univers

Merci à tous mes collègues du groupe Virgo du LAL et des collaborations Virgo ou LIGO, auxquels j'ai emprunté des idées et du matériel pour cette présentation 2

La découverte en bref : GW150914

14 septembre 2015, 11:51 heure de Paris

- Signal observé dans les 2 détecteurs LIGO à 7 ms d'intervalle
 - Très court (< 1 s)</p>
 - Très fort
 - Par rapport au bruit de mesure
 - Très faible dans l'absolu
- Signature attendue pour la « fusion » de deux trous noirs

Evénement

baptisé

GW150914

LIGO Livingston Louisiane, USA

11 février 2016, 16:30 heure de Paris

« Ladies and gentlemen, we have detected gravitational waves, we did it. » David Reitze, directeur des observatoires LIGO

- Conférences de presse simultanées à Washington, Cascina (site de Virgo, Italie), Paris, Amsterdam, etc.
- Article scientifique (en anglais) publié en ligne
 - Signé par les deux collaborations LIGO et Virgo
 - http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
- Mise en ligne de nombreux articles associés détaillant la découverte
 - Liste complète : <u>https://www.ligo.caltech.edu/page/detection-companion-papers</u> 5

Et entre ces deux dates ?

- 5 mois d'analyses poussées auxquelles ont participé des centaines de scientifiques
 - \rightarrow Des réponses précises à apporter à de nombreuses questions
 - → Tout en gardant secrète la découverte potentielle
 - Chaque vérification aurait pu l'invalider complètement
- L'événement a-t-il une origine « naturelle » ?
 - Pas un signal simulé artificiellement ni ... un piratage des observatoires LIGO !
 - Pas dû à une perturbation de l'environnement
- Les deux détecteurs fonctionnaient-ils normalement ?
 - Qualité et précision des mesures
 - Configuration des détecteurs « gélée » pendant plusieurs semaines
 - → Pour accumuler suffisamment de données représentatives et, ainsi, quantifier la « réalité » du signal vient-il vraiment du cosmos ?
- Quels résultats scientifiques déduire de cet unique événement (pour le moment) ?

6

Ecriture de l'article annonçant la découverte et des articles détaillés associés
Découverte annoncée seulement après acceptation de cet article par PRL

La saga des ondes gravitationnelles

La mécanique céleste

- Modèle géocentrique du système solaire (II^{ème} siècle de notre ère) de Ptolémée
 - \rightarrow La Terre est au centre
 - → Tous les « astres voyageurs » orbitent autour d'elle selon des empilements complexes de sphères
- Première remise en cause sérieuse : le modèle héliocentrique de Copernic (1543)
- Galilée : observations en contradiction avec la théorie de Ptolémée (1610)
 - \rightarrow L'église catholique l'oblige à abjurer « l'erreur » de Copernic
- Kepler (1609-1619) : suppose un modèle héliocentrique & des orbites elliptiques
 - → Il construit trois lois empiriques à partir desquelles il fait des prédictions confírmées par l'observation

Loi de la gravitation universelle

• Newton (1687) :

« Deux masses ponctuelles s'attirent selon une force dirigée le long de la ligne les reliant. La force est proportionnelle au produit des deux masses et inversement proportionnelle au carré de la distance qui les séparent. »

- Simple et élegante
- Explique les lois de Kepler
- Remplace la multitude de sphères nécessaires pour conserver la validité du modèle de Ptolémée
- La découverte de Neptune (1846)
 - Urbain Le Verrier (calculs mathématiques)
 - Gottfried Galle (observations astronomiques)

Règne sur la mécanique pendant plus de deux siècles

Toujours très utilisée aujourd'hui !

Loi de la gravitation universelle

- Cas particulier : l'une des masses est très grande par rapport à l'autre : M >> m
 - Exemples : mouvement de la Terre autour du Soleil satellite en orbite terrestre
 - → Mouvement quasi-circulaire
- Vitesse de satellisation
 - Mise en orbite autour du corps de masse M situé à une distance r

 \rightarrow 7,9 km / s sur Terre

$$v_{sat} = \sqrt{\frac{GM}{r}}$$

- Vitesse de libération
 - Vitesse à atteindre pour échapper à l'attraction du corps de masse M
 - \rightarrow 11,2 km / s pour la Terre
 - → 42,1 km / s pour le Soleil (orbite au niveau de la Terre)

$$V_{\rm lib} = \sqrt{\frac{2GM}{r}}$$

• v_{sat} et v_{lib} sont indépendantes de la masse m et proportionnelles

Trous noirs ?

- Rappel : vitesse de libération
 - Croit comme \sqrt{M}
 - \rightarrow Plus le corps est massif, plus son attraction est forte
 - Décroit comme 1/√r
 - \rightarrow Plus on est loin de ce corps et moins on sent son attraction
- Vitesse limite : vitesse de la lumière dans le vide
 - Théorie de la relativité restreinte (Einstein, 1905)
 - c = 299 792 458 m / s
- Peut-on avoir $v_{lib} = c$?
 - Oui : M très grand et/ou r très petit
 - Possibilité explorée dès le 18^e siècle
 - \rightarrow Mitchell (1783) \rightarrow de Larlace (1706) Théorie corpusculaire de la lumière
 - \rightarrow de Laplace (1796)
 - De tels astres, s'ils existent, ont un champ gravitationnel si fort que même la lumière ne peut pas s'en échapper !
- XIX^e siècle : lumière ⇔ onde
 → Problème mis de côté jusqu'à la théorie de la relativité générale (1915)

Rayon de Schwartzschild

- Rayon de Schwartzschild R_s (1916)
 - On part de $v_{lib} = c$ et on en déduit $R_S(M)$

$$R_{s} = \frac{2GM}{c^{2}} \approx 3 \text{ km}\left(\frac{M}{M_{\text{Soleil}}}\right)$$

- Très petit pour les corps célestes « habituels »
 - Planètes, étoiles
- Compacité

C =
$$\frac{R_s}{rayon}$$
≤1

Objet	Terre	Soleil	Naine blanche	Etoile à neutrons	Trou noir
Compacité	1,4 10 -9	4,3 10 ⁻⁶	10-4	0.3	1

• Attention : « compact » et « dense » sont deux choses différentes

Mensité » d'un trou noir

$$\rho = \frac{\text{"Masse"}}{\text{"Volume"}} \approx 1,8 \times 10^{16} \text{g/cm}^3 \left(\frac{\text{M}_{\text{Soleil}}}{\text{M}}\right)^2$$

Densité nucléaire : ~3×10¹⁴ g/cm³

La Relativité générale

- Einstein 1915-1917
 - Grossman, Hilbert
- « L'espace-temps dit à la matière comment se déplacer ; la matière dit à l'espace-temps comment se courber. »
 John Archibald Wheeler (1990)

Gravitation Courbure de l'espace temps

- ↔ Courbure de l'espace-temps↔ Densité d'énergie
- Généralisation de la théorie de la gravitation universelle de Newton
 - Explication de phénomènes dont la mécanique newtonienne ne rendait pas compte : avance du périhélie de Mercure, etc.
 - Prédiction de nouveaux effets : expansion de l'Univers, trous noirs, lentille gravitationnelle, etc.
- Jamais mise en échec depuis
 - A la base du Modèle Standard cosmologique Friedman, Lemaître, etc.
 - Une application : le système GPS

Les ondes gravitationnelles

- Une des premières prédictions de la relativité générale (1916)
 - Les masses accélérées induisent des perturbations de l'espace-temps qui se propagent à la vitesse de la lumière

- Pas d'émission d'ondes gravitationnelles (OG) si la source est axisymmétrique
 - Une « bonne » source doit avoir une distribution de masse asymétrique
- L'amplitude h d'une OG
 - est sans dimension
 - Décroît comme 1/(distance à la source d)
 - Les détecteurs y sont directement sensibles
- → Gain d'un facteur 2 (10) en sensibilité
 ⇔ Gain d'un facteur 2 (10) en distance
 ⇔ Volume d'Univers observable augmenté par un facteur 8 (1000)

Effet d'une onde gravitationnelle

- Effet des deux polarisations sur un anneau de « masses test »
- Variations opposées dans deux directions perpendiculaires

→ Idée : utiliser un détecteur capable de mesurer la différence entre deux longueurs à angle droit ...

Effet d'une onde gravitationnelle

• En trois dimensions

Une grande variété de sources

- Classification en terme de
 - Durée du signal
 - Gamme de fréquence
 - Forme d'onde : connue/inconnue

- Autres signaux émis simultanément ? Ondes électromagnétiques, neutrinos, etc.
- Coalescence d'un système binaire « fusion » de deux astres compacts
 - Les derniers instants de l'évolution d'un système comme PSR B1913+16
 - \rightarrow Les astres compacts se rapprochent à mesure qu'ils perdent de l'énergie (\rightarrow OG)
 - Trois phases distinctes: « spirale », « fusion » et « désexcitation »
 - \rightarrow Modélisées par des calculs analytiques et des simulations numériques
- Sources transitoires (« bursts »)
 - Effondrement de cœurs d'étoiles (supernovae)
- Sources permanentes
 - Pulsars
 - Fonds « stochastiques »
- Probablement beaucoup d'autres sources encore inconnues ...

Le spectre des ondes gravitationnelles

Les détecteurs d'ondes gravitationnelles

- Sur terre
 - Barres résonantes (Joe Weber : le pionnier de la recherche des OGs)
 - → Bande passante étroite, sensibilité limitée : plus utilisées aujourd'hui
 - Détecteurs interférométriques : LIGO, Virgo, etc. : détails à venir
 - → Démarrage des détecteurs de 2^{ème} generation (« avancés ») Etudes préliminaires pour la 3^{ème} génération de détecteurs (Einstein Telescope)
 - Chronométrage des pulsars « Pulsar Timing Array » (<u>http://www.ipta4gw.org</u>)
 - → Modulation des temps d'arrivé des signaux émis par des pulsars galactiques millisecondes due à des OGs très basses fréquences
- Dans l'espace
 - Future mission eLISA (<u>https://www.elisascience.org</u>, lancement dans 10-15 ans)
 - Technologies testées récemment (et avec succès) par la mission LISA Pathfinder

Détecter les ondes gravitationnelles

1916-2016: un siècle de progrès

• 1916 : Prédictions des OG (Einstein)

1957 : Conférence de Chapel Hill

• 1963 : Trous noirs de Kerr

- 1990's : développements théoriques pour la coalescence de systèmes binaires (Blanchet, Damour, Deruelle, Iyer, Will, Wiseman, etc.)
- 2000 : Idem pour le cas de systèmes binaires de 2 trous noirs (Buonanno, Damour)
- 2006 : simulations de la fusion de deux trous noirs (Baker, Lousto, Pretorius, etc.)

(Bondi, Feynman, Pirani, etc.)

- 1960's : premières barres de Weber
- 1970 : premier prototype d'ITF (Forward)
- 1972 : Etudes de faisabilité détaillées (Weiss)
- 1974 : PSRB 1913+16 (Hulse & Taylor)
- Années 1980 : Prototypes (~10 m de long) (Caltech, Garching, Glasgow, Orsay)
- Fin des années 1980 : projets Virgo & LIGO
- Années 1990 : LIGO et Virgo financés
- 2005-2011 : premières prises de données
- 2007 : accord Virgo-LIGO partage des données, analyses et publications communes
- 2012 : financement des détecteurs avancés
- 2015 : démarrage de LIGO avancé

La Collaboration Virgo

- 6 pays européens
- 21 laboratoires
- ~300 membres environ (LIGO : ~750)
- Virgo a été construit par 11 laboratoires du CNRS (France) et de l'INFN (Italie)
 - Budget : ~150 M€
 - Des équipes des Pays-Bas, de Pologne, de la Hongrie et de l'Espagne ont rejoint le projet ensuite
- Budget pour Advanced Virgo : ~20 M€
 - Plus des contributions en nature de NIKHEF
- Le consortium EGO (European Gravitational Observatory) gère le site de Virgo à Cascina.
 Il fournit infrastructures et ressources pour la construction et le fonctionnement du détecteur

APC Paris **ARTEMIS** Nice **EGO** Cascina **INFN Firenze-Urbino INFN Genova INFN Napoli INFN Perugia INFN Pisa INFN Roma La Sapienza INFN Roma Tor Vergata INFN Padova INFN TIFPA** LAL Orsay – ESPCI Paris **LAPP** Annecy **LKB** Paris LMA Lyon **NIKHEF Amsterdam** POLGRAW **RADBOUD** Uni. Nijmegen **RMKI Budapest** Valence University

; DI

Un bref historique

- Années 1980 : Collaboration entre Alain Brillet (CNRS, Orsay, lasers) et Adalberto Giazotto (INFN, Pise, suspensions)
- 1989 : Proposal
- 27 juin 1994 : Approbation du projet par le CNRS et l'INFN
- Mai 1997 : Design report final
- 2003 : Fin de la construction
- 2007-2010 : Prises de données Virgo puis Virgo+
- 2011-2016 : Passage de « Virgo » à « Virgo Avancé »
- 2015 : observation par les détecteurs LIGO Avancés de deux ondes gravitationnelles → 2016 : annonces des découvertes par les collaborations LIGO et Virgo
- 2017 : Première prise de données de « Virgo Avancé »

Principe de fonctionnement

Un détecteur réel : Virgo avancé

• <u>https://www.youtube.com/watch?v=6raomYII9P4</u>, © Marco Kraan, Nikhef (Pays-Bas)

Si Virgo était à Michel-Ange ...

Les principaux bruits du détecteur

Contrôler l'interféromètre

- Sensibilité \Leftrightarrow maintenir l'ITF à son point de fonctionnement
 - Cavités optiques de stockage en résonance
 + interféromètre sur la frange noire
 - Contrôle des longueurs des cavités au niveau de 10⁻¹² m
 - Contrôle de l'alignement des cavités au niveau de 10⁻⁹ rad
- Un problème très complexe
 - Décomposé en plusieurs étapes successives
 Mouvement libre des miroirs → Contrôle local → Contrôle global
 - Utilisation de « signaux d'erreur » pour mesurer l'écart à la configuration de référence du détecteur
 - → Calcul et application de corrections (positions, angles) au niveau des miroirs
 - Boucles de contrôle : de quelques Hz à quelques kHz
 - Limitations : bande passante des contrôles et performances des actuateurs qui appliquent les corrections calculées aux suspensions des miroirs

De la 1^{ère} à la 2^{nde} génération de détecteurs

- But : améliorer d'un facteur 10 la sensibilité des détecteurs
 - Augmentation d'un facteur 1000 du volume d'Univers observable !
 - Augmentation significative des taux d'événements attendus
 → A grande échelle, l'Univers est isotrope et uniforme
- Pour y parvenir : des améliorations très variées
 - Augmentation de la puissance du laser
 - Miroirs deux fois plus lourds
 - Augmenter la taille du faisceau incident sur ces grands miroirs
 - Suspensions spéciales pour les miroirs
 - Amélioration du niveau de vide dans les tubes des bras kilométriques
 - Vapeur d'eau piégée par des trappes cryogéniques aux extrémités des bras
 - Instrumentation et bancs optiques sous vide
- LIGO Avancé (aLIGO) financé ~un an avant Virgo Avancé (AdV)
 - Crise financière en 2008-2010...
 - → Première prise de données « d'observation » aLIGO en septembre 2015
 - Mise à jour d'AdV toujours en cours
 - \rightarrow Démarrage du détecteur en 2017 ...

Un réseau de détecteurs

Un réseau de détecteurs

- Un seul ITF ne suffit pas pour détecter les OGs
 - Difficile de séparer un signal de tous les bruits
 - Fausses détections annoncées dans le passé (barres) ...
- → Solution : utiliser un réseau d'interféromètres
- Accords de collaboration entre les différents projets
 - Partage des données, analyses et publications communes
- ITF : détecteurs non directionnels
- Triple coïncidence nécessaire pour reconstruire la position de la source dans le ciel

Premières détections

L'événement GW150914

Simulation de la fusion des deux trous noirs

Que s'est-il passé juste après GW150914?

- 14/09 2015, 11h51 : événement enregistré à Livingston, puis 7 ms plus tard à Hanford
- 3 minutes plus tard : événement repéré, messages automatiques envoyés
 - Suivi temps réel important pour la recherche éventuelle de contreparties
- 1 heure plus tard : premiers échanges d'e-mails dans les collaborations LIGO et Virgo

```
From Marco Drago

Subject [CBC] Very interesting event on ER8

Hi all,

cWB has put on gracedb a very interesting event in the last hour.

https://gracedb.ligo.org/events/view/G184098
```

- 20 minutes plus tard : pas de signal artificiel injecté
 - Confirmation officielle à 17h59 le même jour
- 10 minutes plus tard : une possible fusion de deux trous noirs
- 25 minutes plus tard : qualité des données bonne a priori
- 15 minutes plus tard : premières estimations des paramètres du signal
 - Taux de fausses alarmes < 1 / 300 ans : un événement significatif !</p>
- 2 jours plus tard (16/09, 14h39) : alerte envoyée aux télescopes partenaires

- L'excès doit être cohérent (et coïncident) entre les deux interféromètres
- Efficacité similaire à celle des recherches par filtrage adapté pour les systèmes binaires de trous noirs
 - Fonctionnement en temps réel pour O1 !

Filtrage adapté ...

- ... ou la manière optimale de chercher un signal connu Même faible – en particulier : invisible à l'œil nu !
- On « compare » (opération mathématique) les données avec un « calque »qui correspond au signal cherché. Si les données contiennent un signal qui « ressemble » beaucoup au calque, l'algorithme le fait « ressortir ».
- En fait des (centaines de) milliers de calques
 - Correspondant chacun à des jeux de paramètres (inconnus) différents
 - Calcul analytique + simulations numériques
 - Espace des paramètres, « pavé » par des calques, ≧ Mass 2 efficaces chacun dans une petite région
 - \rightarrow Voir exemple ci-contre
 - chaque point correspond à un calque
- Recherche de signaux forts dans les deux ITFs, coïncidents en temps et « ressemblants »

La Terre « secouée » par GW150914

- L'effet présenté est évidemment très très très exagéré
 - Mais l'animation donne une bonne idée de l'évolution temporelle du signal

Au fait, pourquoi deux trous noirs?

- Résultat des analyses !
 - Le meilleur calque correspond à la fusion de deux trous noirs
 - Il reproduit très bien le signal mesuré
- Deux objets massifs et compacts en orbite l'un autour de l'autre à 75 Hz (la moitié de la fréquence de l'OG), donc à une vitesse relativiste et qui se rapprochent très près avant de fusionner
 - \rightarrow A peine quelques R_S !
- → Seuls des trous noirs peuvent correspondre à ces observations
- ~3 M_{Soleil} rayonnées en OG

Time (s)

39

- L'événement le plus énergétique jamais observé
 - Plus que tous les sursauts gamma détectés jusqu'à aujourd'hui
 - Puissance crète plus de 10 fois supérieure à celle émise par l'Univers visible

Recherche de contreparties optiques

• Méthode

Recherche de contreparties optiques

• Couverture du ciel

• Observations : aucune contrepartie identifiée

Mesure des paramètres du signal

- Une quinzaine de paramètres au total
 - Masses et moment angulaires des deux trous noirs initiaux et du trou noir final, distance de la source, etc.
- Utilisation de méthodes statistiques inférence bayésienne pour
 - obtenir une valeur et une incertitude pour chaque paramètre
 - comparer des modèles de forme d'onde entre eux
- Résultats astrophysiques
 - Taux d'occurrence d'événements comme GW150914
 - → Plus d'événements nécessaires pour obtenir une mesure précise
 - Scénarios de formation de systèmes binaires de trous noirs stellaires
- Tests de la relativité générale
 - Aucune déviation significative observée par rapport aux prédictions
 - Meilleure limite sur la masse d'un éventuel graviton $\rightarrow < 10^{-22} \text{ eV/c}^2$

Exemple de mesure

• Impact des paramètres des trous noirs sur la forme d'onde observée

- Evolutions très différentes de la fréquence des signaux au cours du temps
 - \rightarrow Détermination des jeux de paramètres les plus probables

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

observed by	LIGO L1, H1	duration from 30 Hz ~ 200 ms		
source type	black hole (BH) binary	# cycles from 30 Hz ~10		
date	14 Sept 2015	peak GW strain 1 x 10 ⁻²¹		
time	09:50:45 UTC	peak displacement of to ooo for		
likely distance	0.75 to 1.9 Gly	interferometers arms		
	230 to 570 Mpc	frequency/wavelength 150 Hz, 2000 km		
redshift	0.054 to 0.136	at peak GW strain		
signal-to-noise ratio	24			
false alarm prob	< 1 in 5 million	peak GW luminosity 3.6 x 10 ³⁰ erg s ⁻¹		
		radiated GW energy 2.5-3.5 Mo		
false alarm rate < 1 in 200,000 yr		remnant ringdown freq. ~ 250 Hz		
Source Mas	ises M⊙	remnant damping time ~ 4 ms		
total mass	60 to 70	rempant size, area 180 km, 3.5 x 10 ⁵ km ²		
primary BH	32 to 41	consistent with passes all tests		
secondary BH	25 to 33	general relativity? performed		
remnant BH	58 to 67	graviton mass bound $< 1.2 \times 10^{-22} \text{ eV}$		
mass ratio	0.6 to 1			
primary BH spin	< 0.7	binary black below 2 to 400 Gpc ⁻³ yr ⁻¹		
secondary BH spin	< 0.9	binary black holes		
		online trigger latency ~ 3 min		
remnant BH spin	0.57 to 0.72	# offline analysis pipelines 5		
signal arrival time	arrived in L1 7 ms	~ 50 million (=20,000		
delay	betore H1	CPU hours consumed PCs run for 100 days		
likely sky position	Southern Hemisphere	papers on Feb 11, 2016 13		
likely orientation	face-on/off	~1000, 80 institution		
resolved to	~600 sq. deg.	# researchers in 15 countries		

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 × 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, M⊙=1 solar mass=2 × 10³⁰ kg

En résumé

Le trou noir final a environ la « taille » de l'Islande

L'événement GW151226

GW151226

- Une autre coalescence de deux trous noirs
- Tous les signaux ne s(er)ont pas visibles à l'œil nu !
 - Nécessité du filtrage adapté

- Masses des trous noirs plus petites (14 et 8 M_{\odot})
 - Amplitude du signal plus faible
 - Plus de cycles dans la bande de détection

GW151226

- Excellent accord entre formes d'onde
 - analytique (développement post-newtonien, en gris) et
 - numérique (en rouge)

Bilan de la prise de données O1

- Deux détections confirmées, un candidat
- Systèmes binaires de trous noirs
 - 10⁻²¹ 1.0 0.5 GW150914 $\sqrt{S(f)}$ and $2|h(f)|\sqrt{f}$ (strain/ $\sqrt{\mathsf{Hz}}$ 0.0 -0.5-1.010-22 1.0 Strain (10⁻²¹ 0.5 LVT151012 0.0 ••••••• -0.5-1.01.0 10⁻²³ 0.5 GW151226 0.0 Hanford -0.5Livingston -1.010² 10¹ 10³0.0 0.5 1.0 1.52.0 **48** Time from 30 Hz (s) Frequency (Hz)
- Pas d'autre type de source observé

Et maintenant ?

Situation actuelle des détecteurs

- Détecteurs LIGO avancés
 - Démarrage de la seconde prise de données le 30 novembre 2016
 - Point fin janvier : 12 jours de données en coïncidence au 23 janvier,

2 candidats identifiés et transmis aux télescopes partenaires

- Détecteur Virgo avancé
 - En pleine phase de démarrage du détecteur !
 - Progrès importants dans la compréhension et le contrôle de l'instrument → Un « nouveau » détecteur
 - Objectif : rejoindre LIGO « dès que possible »
 - \rightarrow Encore quelques semaines/mois d'effort ...

Exemple de contrôle

- 31 janvier 2017
- PR-ITF Offset frange noire : 0.1

Exemple de contrôle

- 31 janvier 2017
- PR-ITF Offset frange noire : 0.1

[Version lente]

Réseau de détecteurs

- Bientôt : un réseau de détecteurs terrestres
 - plus large
 - plus performant

→ On s'attend à observer (beaucoup) d'autres signaux

Une grande variété de sources et de détecteurs

• Site internet associé : <u>http://rhcole.com/apps/GWplotter</u>

54

Conclusions

- Premières observations directes des ondes gravitationnelles
- Premières observations directes des trous noirs
- Les systèmes doubles de trous noirs existent et fusionnent
 - En un temps inférieur à l'âge de l'Univers !
 - Taux d'événements encore incertain
 - → Plus d'événements nécessaires pour l'estimer avec précision
- Des trous noirs ont des masses de l'ordre de 20-30 M_{Soleil}
- Implications astrophysiques
 - Formation de trous noirs stellaires lourds, de systèmes doubles de trous noirs ...
- Pas de déviation observée par rapport aux prédictions de la relativité générale
- LIGO/Virgo ont ouvert une nouvelle fenêtre sur l'Univers
 - A venir : chronométrage des pulsars, eLISA, polarisation du CMB
- \rightarrow Nous sommes à l'aube de l'astronomie en ondes gravitationnelles

La Nuit des Ondes Gravitationnelles

56

Evolution du pic de sensibilité des détecteurs interférométriques d'ondes gravitationnelles

57

Film CNRS Images

- <u>https://lejournal.cnrs.fr/videos/ondes-gravitationnelles-les-detecteurs-de-lextreme</u>
 - 6 minutes, 2016

