The first direct detections of gravitational waves **Group from Marlborough College Blackett Observatory** EGO visit, April 3rd 2017

Nicolas Arnaud (narnaud@lal.in2p3.fr) Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) **European Gravitational Observatory (Consortium, CNRS & INFN)**

Outline

- Gravitational waves in a nutshell
 - Sources and properties
- Gravitational wave interferometric detectors
 - Principle and main characteristics
 - Advanced detectors
 - A worldwide network of detectors
- GW150914 & GW151226
 - The Advanced LIGO « Observation 1 » Run: September 2015 – January 2016
 - First direct detections of gravitational waves from a black hole binary merger
 - Physics results

• Outlook

Thanks to the many colleagues from the LAL Virgo group, from Virgo and LIGO from wich I borrowed ideas and material for this talk

Gravitational waves: sources and properties

General relativity in a nutshell

- "Spacetime tells matter how to move; matter tells spacetime how to curve" John Archibald Wheeler (1990)
 - A massive body warps the spacetime fabric
 - Objects (including light) move along paths determined by the spacetime geometry
- Einstein's equations

$$\boldsymbol{G}_{\mu\nu}=\frac{\boldsymbol{8}\boldsymbol{\pi}\boldsymbol{G}}{\boldsymbol{c}^4}\boldsymbol{T}_{\mu\nu}$$

- \rightarrow In words: Curvature = Matter
- Einstein tensor $G_{\mu\nu}$: manifold curvature

- Equality between two tensors
 - \rightarrow Covariant equations
- Need to match Newton's theory for weak and slowly variable gravitational fields
 → Very small coupling constant: the spacetime is very rigid
- Non linear equations: gravitational field present in both sides

Newtonian gravitation and black holes

- Newton 1687: Law of universal gravitation
 - Apply both on Earth and to celestial objects
 - Demonstrate Kepler laws

 \rightarrow Neptune discovery (1846):

Urbain Le Verrier (mathematical computation)

& Gottfried Galle (observation)

• Escape velocity, in case one mass is much larger than the other one (M>>m)

$$v_e = \sqrt{\frac{2GM}{r}}$$

 $F_{M \to m} = F_{m \to M} = \frac{GmM}{r^2}$

(independent from m)

- What if $v_e = c$?
 - Stars with a gravitational field so strong that their light would be trapped
 - Context: the corpuscular theory of light
 - \rightarrow John Mitchell (1783)
 - \rightarrow Pierre-Simon de Laplace (1796)

 \rightarrow Issue forgotten until the publication of Einstein's general relativity (1915)

Schwartzschild Radius

• Newtonian escape velocity:
$$V_e = \sqrt{\frac{2GM}{r}}$$

• Schwartzschild radius
$$R_s$$
 (1916): $R_s = \frac{2GM}{c^2} \approx 3km \left(\frac{M}{M_{sun}}\right)$

• $R_{s}(M)$ such as $v_{e} = c$

 \rightarrow Very small for « usual » celestial objects

Planets, stars

• Compacity
$$\mathbf{C} = \frac{\mathbf{R}_s}{\mathbf{radius}} \le 1$$

Object	Earth	Sun	White dwarf	Neutron star	Black hole
Compacity	1.4 10 ⁻⁹	4.3 10-6	10-4	0.3	1

- Beware: compact and dense are two different things!
 - Black hole « density »

$$\rho = \frac{\frac{1}{2}Mass}{\frac{1}{2}Nolume} \approx 1.8 \times 10^{16} \text{ g/cm}^3 \left(\frac{M_{Sun}}{M}\right)^2$$

Black holes

- Spacetime region in which gravitation is so strong that nothing, not even light, can escape from inside its horizon
- Formed by the collapse of massive stars running out of fuel
- Can grow by accreting matter
 - Supermassive black holes are though to exist inside most galaxies
 → E.g. Sagittarius A* in the center of the Milky Way
- Characterized by three numbers (Kerr, 1963)
 - Mass
 - Spin
 - Electric charge
- Black hole horizon
 - Once crossed there's no way back
 - Can only grow with time

A Person In a Boat that Crosses the Curve of No-Return Will Notice Nothing at the Time, But is Doomed To Go Over The Waterfall

he Curve of No-Return

Gravitational waves (GW)

- One of the first predictions of general relativity (1916)
 - Accelerated masses induce perturbations of the spacetime which propagate at the speed of light
 - Linearization of the Einstein equations $(g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, |h_{\mu\nu}| << 1)$ leads to a propagation equation far from the sources
- Traceless and transverse (tensor) waves
 - 2 polarizations: «+» and «×»
 - \rightarrow See next slide for the interpretation of these names
- Quadrupolar radiation
 - Need to deviate from axisymmetry to emit GW
 - No dipolar radiation contrary to electromagnetism
- GW amplitude h is dimensionless
 - Scales with the inverse of the distance from the source
 - GW detectors sensitive to amplitude ($h \propto 1/d$) and not intensity ($h^2 \propto 1/d^2$)
 - \rightarrow Important to define the Universe volume a given detector is sensitive to

Effect of gravitational waves on test masses

- GW: propagating perturbation of the spacetime metric
 - Acts on distance measurement between test masses (free falling)

• Effect of the two GW polarizations on a ring of free masses

Effect of gravitational waves on test masses

• In **3D**

Do gravitational waves exist?

- Question (officially) solved since February 11 2016!
 - But was very relevant beforehand ... and long-standing in the community
- Controversy for decades
 - Eddington, 1922: « GW propagate at the speed of thought »
 - 1950's: general relativity is mathematically consistent (Choquet-Buhat)
- Indirect evidence of the GW existence: long-term study of PSR B1913+16 – see next slide
 - Galactic (6.4 kpc away) binary system
 - Two neutron stars, one being a pulsar
- Discovered by Hulse and Taylor in 1974
 - Nobel prize 1993
- Laboratory for gravitation study
 - GW in particular
 - \rightarrow Taylor & Weisberg, Damour

PSR B1913+16

- Galactic (6.4 kpc away) binary system
 Two neutron stars, one being a pulsar
- Discovered by Hulse and Taylor in 1974
 - Nobel prize 1993 for the discovery
- System parameters and orbital motion measured accurately
 → Laboratory for gravitation studies
- GW: long-term studies of the orbital motion
 - Taylor & Weisberg, Damour
- System slowly loosing energy due to GW
 - Orbital motion "accelerates" accordingly \rightarrow 76.5 µs / year – current period: P = 7.75 h
 - Compact stars get "closer": 3.5 m / year
 → Coalescence in... 300 000 000 years
 - Virgo and LIGO « could » see that final part ?????

Sources of gravitational waves

- Einstein quadrupole formula (1916)
 - Power radiated into gravitational waves
 Q: reduced quadrupole momenta

$$\mathbf{P} = \left(\frac{\mathbf{G}}{\mathbf{5c}^{5}} \right) \left\langle \ddot{\mathbf{Q}}_{\mu\nu} \quad \ddot{\mathbf{Q}}^{\mu\nu} \right\rangle$$

13

Very small: 10⁻⁵³ W⁻¹

- Let's rewrite this equation introducing some typical parameters of the source
 - Mass M, dimension R, frequency $\omega/2\pi$ and asymmetry factor a

• One gets
$$\frac{d^3Q}{dt^3} \sim (aMR^2)\omega^3$$
 and $P \sim \frac{G}{c^5}a^2M^2R^4\omega^6$
Using $\omega \sim v/R$ and introducing R_s , one gets:
 $P \sim \left(\frac{c^5}{G}a^2 + C^2 + \left(\frac{v}{c}\right)^6\right)$
 $Huge: 10^{53} W$ © Joe Weber, 1974

- As compact as possible
- Relativistic
- Although all accelerated masses emit GW, no terrestrial source can be detected \rightarrow Need to look for astrophysical sources (typically: $h\sim 10^{-22} \div 10^{-21}$)

A diversity of sources

- Rough classification
 - Signal duration
 - Frequency range
 - Known/unknown waveform
 - Any counterpart (E.M., neutrinos, etc.) expected?
- Compact binary coalescence
 - Last stages of the evolution of a system like PSRB 1913+16
 - \rightarrow Compact stars get closer and closer while loosing energy through GW
 - Three phases: inspiral, merger and ringdown
 - \rightarrow Modeled via analytical computation and numerical simulations
 - Example: two masses M in circular orbit ($f_{GW} = 2 f_{Orbital}$)

- Transient sources (« bursts »)
 - Example: core collapses (supernovae)
- Permanent sources
 - Pulsars, Stochastic backgrounds

radius

Gravitational wave spectrum

15

Gravitational wave detectors

- Ground-based
 - Resonant bars (Joe Weber's pioneering work)
 - \rightarrow Narrow band, limited sensitivity: not used anymore
 - Interferometric detectors
 - \rightarrow LIGO, Virgo and others
 - → 2nd generation (« advanced ») detectors started operation Design studies have started for 3rd generation detectors (Einstein Telescope)
 - Pulsar Timing Array (<u>http://www.ipta4gw.org</u>)
 - \rightarrow GW would vary the time of arrival pulses emitted by millisecond pulsars
- In space
 - Future mission eLISA (<u>https://www.elisascience.org</u>, 2030's)
 - Technologies tested by the LISA pathfinder mission, sent to space last December

Gravitational wave interferometric detectors

1916-2016: a century of progress

• 1916: GW prediction (Einstein)

1957 Chapel Hill Conference

• 1963: rotating BH solution (Kerr)

Theoretical developments Experiments

- 1990's: CBC PN expansion (Blanchet, Damour, Deruelle, Iyer, Will, Wiseman, etc.)
- 2000: BBH effective one-body approach (Buonanno, Damour)
- 2006: BBH merger simulation (Baker, Lousto, Pretorius, etc.)

• 1960's: first Weber bars

(Bondi, Feynman, Pirani, etc.)

- 1970: first IFO prototype (Forward)
- 1972: IFO design studies (Weiss)
- 1974: PSRB 1913+16 (Hulse & Taylor)
- 1980's: IFO prototypes (10m-long) (Caltech, Garching, Glasgow, Orsay)
- End of 1980's: Virgo and LIGO proposals
- 1990's: LIGO and Virgo funded
- 2005-2011: initial IFO « science » » runs
- 2007: LIGO-Virgo Memorandum Of Understanding
- 2012 : Advanced detectors funded
- 2015: First Advanced LIGO science run

18

An interferometer in a nutshell

The Advanced Virgo detector scheme

The Advanced Virgo detector revealed

- Animation by Marco Kraan, NIKHEF
 - https://www.youtube.com/watch?v=6raomYII9P4

Noise & sensitivity

- Noise: any kind of disturbance which pollutes the dark fringe output signal
- Detecting a GW of frequency $f \leftrightarrow$ amplitude $h \ll$ larger \gg than noise at that frequency
- Interferometers are wide-band detectors
 - GW can span a wide frequency range
 - Frequency evolution with time is a key feature of some GW signals
 - \rightarrow Compact binary coalescences for instance
- Numerous sources of noise
 - Fundamental
 - \rightarrow Cannot be avoided; optimize design to minimize these contributions
 - Instrumental
 - \rightarrow For each noise, identify the source; then fix or mitigate
 - \rightarrow Then move to the next dominant noise; iterate...
 - Environmental
 - \rightarrow Isolate the instrument as much as possible; monitor external noises
- IFO sensitivity characterized by its amplitude spectrum density (ASD, unit: $1/\sqrt{Hz}$)
 - Noise RMS in the frequency band $[f_{\min}; f_{\max}] = \sqrt{\int_{f_{\min}}^{f_{\max}} ASD^2(f) df}$

Main interferometer noises

Interferometer control

- A complex working point
 - Resonant Fabry-Perot and recycling cavities + IFO on the dark fringe
 - Arm length difference controled with an accuracy better than 10⁻¹⁵ m
 - The better the optical configuration, the narrower the working point
- « Locking » the IFO is a non-trivial engineering problem
 - Use several error signals to apply corrections on mirror positions and angles
 - → Pound-Drever-Hall signals (phase modulation)
 - \rightarrow Auxiliary green lasers (for 2nd generation IFOs)
 - Feedback loops from few Hz to few kHz
 - Cope with filter bandwith and actuator range
- Multi-step lock acquisition procedure Free mirrors Local control

From initial to advanced detectors

- Goal: to improve the sensitivity by one order of magnitude
 - Volume of observable Universe multiplied by a factor 1,000
 - Rate should scale accordingly
 - \rightarrow Assuming uniform distribution of sources (true at large scale)
- A wide range of improvements
 - Increase the input laser power
 - Mirrors twice heavier
 - Increase the beamspot size on the end mirrors
 - Fused silica bonding to suspend the mirrors
 - Improve vacuum in the km-long pipes
 - Cryotraps at the Fabry-Perot ends
 - Instrumentation & optical benches under vacuum

- Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV)
 - Financial crisis in 2008-2010...
 - \rightarrow aLIGO ready for its first « observation run » in September 2015
 - AdV upgrade still in progress

Sensitivity improvement

• A multi-step process

- Quantum noise dominant at low (radiation pressure) & high (shot noise) frequencies
 → R&D ongoing on frequency-dependent light squeezing
- Coating thermal noise dominant in between
- Low frequency sensitivity ultimately limited by Newtonian noise
 - Stochastic gravitational field induced by surface seismic waves
 - \rightarrow Either active cancellation or go underground

A worldwide network of gravitational wave interferometric detectors

Interferometer angular response

- An interferometer is not directional: it probes most of the sky at any time
 - More a microphone than a telescope!
- The GW signal is a linear combination of its two polarisations $h(t) = F_+(t) \times h_+(t) + F_\times(t) \times h_\times(t)$
 - F₊ and F_× are antenna pattern functions which depend on the source direction in the sky w.r.t. the interferometer plane
 - \rightarrow Maximal when perpendicular to this plane
 - \rightarrow Blind spots along the arm bisector (and at 90 degres from it)

A network of interferometric detectors

- A single interferometer is not enough to detect GW
 - Difficult to separate a signal from noise confidently
 - There have been unconfirmed claims of GW detection
- → Need to use a network of interferometers
- Agreements (MOUs) between the different projects Virgo/LIGO: 2007
 - Share data, common analysis, publish together
- IFO: non-directional detectors; non-uniform response in the sky
- Threefold detection: reconstruct source location in the sky

A network of interferometric detectors

Exploiting multi-messenger information

- •Transient GW events are energetic
 - Only (a small) part of the released energy is converted into GW
 - \rightarrow Other types of radiation released: electromagnetic waves and neutrinos
- Astrophysical alerts \Rightarrow tailored GW searches
 - Time and source location known ; possibly the waveform
 - → Examples: gamma-ray burst, type-II supernova
- GW detectors are also releasing alerts to a worldwide network of telescopes
 - Agreements signed with ~75 groups 150 instruments, 10 space observatories

- Low latency h-reconstruction and data transfer between sites
 Online GW searches for burst and compact binary coalescence
 - Online GW searches for burst and compact binary coalescences

The Advanced LIGO «Observation 1» Run (2015/09 – 2016/01)

aLIGO O1 Run: Observing time

- September 2015 January 2016
 - GW150914 showed up a few days before the official start of O1, during the « Engineering Run 8 »
 - \rightarrow Both interferometers were already working nominally

aLIGO O1 Run: Sensitivity

- Sensitiviy much improved with respect to the initial detectors
 - Factor 3-4 in strain
 - \rightarrow Factor 30-60 in volume probed
- Gain impressive at low frequency where both signals are located

aLIGO O1 Run: GW150914-like horizon

- Sky-averaged distance up to which a given signal can be detected
 - In this case a binary black hole system with the measured GW150914 parameters

- Only depends on the actual sensitivity of the interferometer
 - Online monitoring tool used during data taking

aLIGO O1 Run: "VT" figure of merit

- Cumulative time-volume probed by the instruments
 - \rightarrow Expected number of sources (given a model)
 - Unit: Mpc³.year
 - This slide: 1.4-1.4 M_☉ « standard » binary neutron star system case

• Mixes sensitivity and duty cycle information

September 14 2015, 11:51 CET

- Signal detected in both LIGO detectors, with a 7 ms delay
 - Short (< 1 s)
 - Very strong/significant
 - Signal expected from a binary black hole coalescence

Event labelled GW150914

February 11 2016, 16:30 CET

- Simultaneous press conferences in Washington DC, Cascina (Virgo site, Italy), Paris, Amsterdam, etc.
- Detection paper, accepted on PRL, made available online
 - Published by the LIGO and Virgo collaborations
 - http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
- Several « companion » papers online at the same time or shortly thereafter
 - See full list at <u>https://www.ligo.caltech.edu/page/detection-companion-papers</u>

In between these two dates...

- Make sure that the signal was not a simulated waveform
 - For instance a « blind » injection or someone hacking LIGO!
- Check the detector status at/around the time of the event
- « Freeze » the detector configuration
 - To accumulate enough data to assess the signal significance
- Rule out the possibility of environmental disturbances producing that signal
- Run offline analysis to confirm/improve the online results
- Extract all possible science from this first/ unique (so far) event
- Write detection paper and the associated « companion » papers
 - Detection paper had to be accepted prior to making the result public
- Keep GW150914 secret, hope for the best
 - Any of the items above could have been a showstopper

Rapid response to GW150914

- 2015/09/14 11:51 CET: event recorded first in Livingston, 7 ms later in Hanford
- 3 minutes later : event flagged, entry added to database, contacts notified
 - Online triggers important in particular for searches of counterparts
- 1 hour later: e-mails started flowing within the LIGO-Virgo collaboration

```
From Marco Drago

Subject [CBC] Very interesting event on ER8

Hi all,

cWB has put on gracedb a very interesting event in the last hour.

https://gracedb.ligo.org/events/view/G184098
```

- 20 minutes later: no signal injected at that time
 - Confirmed officially at 17:59 that day blind injections useful to test pipelines
- 10 minutes later: binary black hole candidate
- 25 minutes later: data quality looks OK in both IFOs at the time of the event
- 15 minutes later: preliminary estimates of the signal parameters
 - False alarm rate < 1 / 300 years: a significant event!
- Two days later (09/16, 14:39 CET): alert circular sent to follow-up partners

GW150914: raw power

• Blue: aLIGO Livingston Yellow: aLIGO Hanford

GW150914: calibrated h(t)

• Control signals used to recover the strain signal

GW150914: band-pass filtering

• 20 Hz \rightarrow 500 Hz

44

GW150914: whitened data

 Data weighted by the noise level in frequency space
 → Whitened data have a flat PSD

- ± 20 nW peak-to-peak at the interferometer output port
 - To be compared with the incident power on the beamsplitter: ~500 W

GW150914: whitened data

 Data weighted by the noise level in frequency space
 → Whitened data have a flat PSD

- ± 20 nW peak-to-peak at the interferometer output port
 - To be compared with the incident power on the beamsplitter: ~500 W

46

GW150914: spectrograms

• Time-frequency maps

Compact binary coalescence search

- Well-predicted waveform
 - → Matched-filtering technique (optimal)
 - Noise-weighted cross-correlation of data with a template (expected signal)
- Parameter space covered by a template bank
 - Analytical for NS-NS, BH-NS
 - Analytical + numerical for BH-BH
 - Parameters: mass and spin of the initial black holes
 - \rightarrow ~250,000 templates in total
- Look for triggers from the two IFOs using the same template and coincident in time
 - Check matching between signal and template
- Offline search
 - Part of the parameter space searched online
 - Two independent offline pipelines

Compact binary coalescence search

- Well-predicted waveform
 - → Matched-filtering technique (optimal)
 - Noise-weighted cross-correlation of data with a template (expected signal)
- Parameter space covered by a template bank
 - Analytical for NS-NS, BH-NS
 - Analytical + numerical for BH-BH
 - Parameters: mass and spin of the initial black holes
 - \rightarrow ~250,000 templates in total
- Look for triggers from the two IFOs using the same template and coincident in time
 - Check matching between signal and template
- Offline search
 - Part of the parameter space searched online
 - Two independent offline pipelines

Burst search

- Search for clusters of excess power (above detector noise) in time-frequency plane
 - Wavelets

GW150914 signal strong enough to be immediately identified on spectrograms

- Chirp-like shape: frequency and amplitude increasing with time
- Coherent excess in the two interferometers
 - Reconstructed signals required to be similar

• Efficiency similar to (optimal) matched filtering for binary black hole – short signal

Online last September for O1

Data quality

- Detector configuration frozen to integrate enough data for background studies
 - ~40 days (until end of October) corresponding to 16 days of coincidence data
 - \rightarrow Steady performances over that period
- Tens of thousands of probes monitor the interferometer status and the environment
 - Virgo: h(t) ~ 100 kB/s
 DAQ ~ 30 MB/s
- Help identifying couplings with GW channel
 - Quantify how big a disturbance should be to produce such a large signal
 - Not to mention the distinctive shape of the GW150914 signal
- Extensive studies performed
 - Uncorrelated and correlated noises
 - Bad data quality periods identified and vetoed
 - \rightarrow Clear conclusions: nominal running, no significant environmental disturbance 51

Background estimation

- Studies show that GW150914 is not due to issues with the interferometer running, nor the reflection of environmental disturbances (correlated or not)
 - \rightarrow How likely is it to be due to « expected » noise fluctuations?
 - Assess signal significance!
- Input: 16 days of coincidence data
 → Time shift method to generate a
 much larger background dataset
- Reminder: real GW events are shifted by 10 ms at most between IFOs
 - Light travel time over 3,000 km
- By shifting one IFO datastream by a (much) larger time, one gets new datastreams in which « time » coincidence are necessarily due to noise
 - 16 days of coincident data \rightarrow tens of thousands years of background « data »

Signal significance – CBC analysis

- x-axis: detection statistic used to rank events (the « SNR »)
 - GW150914: strongest event (true in both IFOs)
- Observed

 (zero-lag)
 events
- Solid lines:
 2 background estimations (from time-lag)

• SNR ~ 23.6; false alarm rate < 1 event / 203,000 years false alarm probability $< 2 \times 10^{-7} (> 5.1 \sigma)$

Signal significance – Burst analysis

• False alarm rate < 1 event / 67,400 years False alarm probability $< 2 \times 10^{-6}$ (> 4.6 σ)

Why two black holes?

- Result of matched filtering!
 - Excellent match between the best template and the measured signal
- Two massive compact objects orbiting around each other at 75 Hz (half the GW frequency), hence at relativistic speed, and getting very close before the merging: only a few R_s away!
- → Black holes are the only known objects which can fit this picture
- About 3 M_{Sun} radiated in GW
- The « brighest » event ever seen
 - More powerful than any gamma-ray burst detected so far
 - Peak power larger than 10 times the power emitted by the visible Universe

55

Simulation of the coalescence

Parameter estimation

- 15 parameters total
 - Initial masses, initial spins, final mass, final spin, distance, inclination angle + precession angle (if exists)
- Bayesian inference
 - Probability density function for each parameter: mean value + statistical errors

Parameter estimation

• Impact of the black hole parameters on the waveform

Main results

Final black hole has about the area of Iceland

Final BH mass and spin

 $M_{\rm f} = 62^{+4} {}_{-4} M_{\odot}$ $a_{\rm f} = 0.67^{+0.05} {}_{-0.07}$

Main results

Degeneracy luminosity distance / inclination angle

- Face-on binary favored
- Luminosity distance ~ 400 Mpc large error bar

→ Excellent agreement between matched filtering (BBH template) and wavelet (burst reconstruction)

Testing general relativity

- Previous tests : solar system, binary pulsars, cosmology
 - Weak fields, linear regime ...
- With GW150914 : strong field, non-linear regime, relativistic velocities → New tests !
- Simplest test : data substracted with closest predicted waveform
 - Residuals are compatible with Gaussian noise within measurement accuracy
 → Deviations from GR constrained to be less than 4%
- Search for deviations from GR prediction for PN expansion of the inspiral signal phase (xPN ⇔ (v/c)^{2x})
 - Weak constraints but the best up to now except lowest order (few number of cycles)

61

Testing general relativity

- Consistency tests
 - The reconstructed waveform has 3 distinct regimes: inspiral + merger + ringdown (IMR)

Consistency of parameters from different regimes (90% confidence region)

(Damped sinusoid model) (4 different start times – offsets from the merging time)

Bound on the graviton mass

- If the graviton were massive
 - Dispersion relation
 - Propagation velocity would depend on energy

$$v_{g}^{2} = c^{2} \left(1 - \frac{m_{g}^{2}c^{4}}{2E^{2}} \right)$$

→ Additional terms in the phase of the inspiral signal
where D is the distance, z the redshift and
$$\lambda_g = \frac{h}{m_g c}$$
 is the graviton Compton wavelength

$$\delta \varphi(\mathbf{f}) = \frac{\pi \mathbf{D} \mathbf{c}}{(\mathbf{1} + \mathbf{z}) \lambda_g^2} \frac{1}{\mathbf{f}}$$

- GW150914 data: $\lambda_g > 10^{13}$ km or equivalently $m_g < 10^{-22}$ eV • Best limit!
- Best previous limit in solar system tests (Mars) : $\lambda_g > 3 \times 10^{12} \text{km}$
 - Yukawa correction to the Newtonian potentiel

$$\mathbf{V(r)} = \frac{\mathbf{GM}}{\mathbf{r}} \exp\left(-\frac{\mathbf{r}}{\lambda_{g}}\right)$$

• Binary pulsars tests: not competitive $\lambda_g > 10^9 - 10^{10}$ km

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms		
source type	black hole (BH) binary	# cycles from 30 Hz	~10		
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹		
time	09:50:45 UTC	peak displacement of	±0.002 fm 150 Hz, 2000 km		
likely distance	0.75 to 1.9 Gly	interferometers arms			
	230 to 570 Mpc	frequency/wavelength			
redshift	0.054 to 0.136	at peak GW strain			
signal-to-noise ratio	24	реак speed от вня	~ U.O C		
film to note rune		peak GW luminosity	3.6 x 10 ⁵⁰ erg s ⁻¹		
taise alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 M⊙		
false alarm rate	< 1 in 200,000 yr	remnant ringdown free	q. ~ 250 Hz		
Source Mas	ses M⊙	remnant damping time ~ 4 ms			
total mass	60 to 70	rompont sizo, area	180 km 3.5 x 10 ⁵ km ²		
primary BH	32 to 41	consistent with	noseses all tests		
secondary BH	25 to 33	general relativity?	performed		
remnant BH	58 to 67	graviton mass bound	$< 1.2 \times 10^{-22} \text{ eV}$		
mass ratio	0.6 to 1	graviton mass bound	ST.2 X TO SV		
nrimary BH spin	< 0.7	coalescence rate of	2 to 400 Gpc ⁻³ yr ⁻¹		
secondary BH spin	< 0.9	binary black holes			
secondary bit spin	- 0.7	online trigger latency	~ 3 min		
remnant BH spin	0.57 to 0.72	# offline analysis pipelines 5			
signal arrival time	arrived in L1 7 ms	V V .	~ 50 million (=20.000		
delay	before H1	CPU hours consumed PCs run for 100 days			
likely sky position	Southern Hemisphere	napers on Eeb 11, 2016	13		
likely orientation	face-on/off	1000 80 in the 11, 2010 13			
resolved to	~600 sq. deg.	# researchers 7000, 80 Institution			

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 × 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, M⊙=1 solar mass=2 × 10³⁰ kg

Skymap

- Sky at the time of the event
- Skymap contoured in deciles of probability
- 90% contour :
 - ~ 590 degres²
 - Full Moon: 0.5 degres²
- View is from the South Atlantic Ocean, North at the top, with the Sun rising and the Milky Way diagonally from NW to SE

Looking for GW150914 counterparts

• Observation timeline: no counterpart found – none expected for a binary black hole

Initial GW Burst Recovery		Initial GCN Circular			Update (identified)	ed GCN Circular l as BBH candidate)	Final sky map
<i>Fermi</i> GBM, LAT, M IPN, <i>INTEGRAL</i> (ar	MAXI, rchival)	Swift XRT	Swift XRT			-	Fermi LAT, MAXI (ongoing)
BOOTES-3	MASTER	<i>Swift</i> UVOT, SkyMa Pan-STARRS1, KWFC,	apper, MA QUEST, I	STER, TOROS, DECam, LT, P2(TAROT, VST	r, iPTF, Keck , Pan-STARRS1 ky, PESSTO , UH VST	TOROS
			MWA	ASKAP, LOFAR	ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
	1	Jo	$t-t_{\rm m}$	erger (days)	10 ¹	· · ·	10 ²

- Observed on 'Boxing Day'
 - Online trigger from the matched filtering analysis
 - Not detected by the burst online search
 - Detailed studies delayed by the completion of the GW150914 analyses
- Not all GW signals visible to the naked eye!
- Another binary black hole coalescence
- Lighter black holes
 - 14 and 8 M_☉
- Smaller amplitude
- More cycles in the detector bandwidth
- \rightarrow Matched filtering mandatory

- 2nd largest event recorded
 - After GW150914
- A third candidate: LVT151012
 - Lower statistical significance
 - → « Source » much further away (~1 Gpc)
- In this plot, GW150914 has been removed to estimate the bkg as it is a true signal

- Excellent agreement between the different reconstructed waveforms
 - analytical computation (post-Newtonian expansion, in grey)
 - numerical relativity (in red)

In summary: two events, one candidate

- Black hole binary systems
- No other GW source observed so far

And now!?
Current status of the detectors

- Advanced LIGO detectors
 - Second data taking period started on November 30 2016
 - Early March review : 30 days of coincidence data as of February 23 2017

3 candidates identified; partners notified

 \rightarrow Data analysis in progress

- Advanced Virgo detector
 - Commissioning at full speed!
 - Significant milestones already reached understanding + control of the instrument
 → Advanced Virgo is a « brand new » detector
 - Goal : to reach LIGO « as soon as possible »

 \rightarrow A few more weeks of work required...

Controlling the Advanced Virgo detector

Conclusions

Prospects

- Soon: a ground-based detector network
 - larger and
 - more sensitive

→ On can expect to detect (much) more GW signals soon

Probabilities that the number of detections exceeds

• 2 • 10 • 40

Run number X

Detectors and sources: a summary plot

• From http://rhcole.com/apps/GWplotter

77

Outlook

- The network of advanced gravitational wave interferometers is taking shape
 - The two aLIGO detectors started taking data last September and detected the first two gravitational wave signals (GW150914 and GW151226)
 - Virgo is completing its upgrade and is fully committed to joining LIGO asap
 - KAGRA should then join the network in 2018
 - And possibly a third LIGO detector (LIGO-India) some years later
- Sensitivity already good enough to detect gravitational waves
 - Improvements expected in the coming years
 - R&D activities already ongoing for 3rd generation instruments

GW detector peak sensitivity evolution vs. time

79