

Advanced Virgo detector

Julia Casanueva INFN Pisa

Gravitational Waves (GW)

- → Predicted by Einstein in 1916 → consequence of General Relativity WHAT ARE GWs?
 - Perturbations of the metric (geometry of space-time)
 - Caused by an acceleration of masses
 - Propagate at the speed of light.
- → Effect of the passage of a GW
 → change on the distance
 → between free masses

GW amplitude

Mass that senses only the gravitational force

Differential effect:

 $\delta L/L \sim$

→

GW detection principle

- → Differential effect → Michelson interferometer
- → Free test masses → Suspended mirrors

Interference depends on the phase difference between the Michelson arms → <u>sensitive to</u> <u>length difference</u>

<u>Change on the detected power</u> δP_{det}

Michelson interferometer

Which is the optimal working point?

→ Target: reach the maximal sensitivity → maximize the SNR at the detection photodiode

GW detector working point

increase the circulating power

Fabry-Perot cavity

Optical resonator: allows light to circulate in a closed path.

Resonance: maximum power resonating inside the cavity

δΦ ∝ (ν·δL + L·δν)

Finesse: it quantifies the quality factor of the cavity

 P_{cav} / $P_{in} \approx$ 2 \cdot \mathcal{F} / π

Linewidth: FWHM of the resonance in Hz

 $\delta v = c / (\mathcal{F} \cdot 2 \cdot L)$

Limiting noises

- → We want to measure a length difference of the order of 10^{-18} m → Noise becomes a limiting factor
- For Virgo we have developed extreme techniques to reduce the different noise sources
 - → Seismic noise: mirrors are suspended by a "superattenuator" \rightarrow 10¹² of attenuation above 10 Hz
 - → Pressure fluctuations: ultra-high vaccuum \rightarrow P = 10⁻¹² mbar
 - → Laser: extremely stable in frequency ($\nu = 10^{15}$, $\delta\nu = 10^{-6}$ Hz) and very "clean" (high content of TEM00)
 - → Mirrors: low roughness → 10^{-10} m RMS

Injection system

- Laser source 1064nm (Nd:YAG), continuous emission
- Complex system to match the size, position and power to the ITF

Superattenuators

- They are ~9m high
- Top part: Six mechanical filters + inverted pendulum
 - Total attenuation factor is the multiplication of each individual one (f/f₀)²
- Bottom part: Marionetta + Mirror
 - They are controlled using Electromagnetic force (pairs coil-magnet)

There are 7000m³ of vacuum → **Biggest system** of ultra-vacuum of Europe

Mirrors

- ⇒ 35 cm of diameter
- 20 cm thickness
- → 42 kg
- Substrate on fused
 Silica
- Absorption of Silica of <
 1ppm
- → Coating on Ti doped Ta₂O₅ → minimize losses

Monolithic fibers

 The fibers used to suspend the mirrors are made also in Silica

Their diameter is 400 µm!

Injection system

- Laser source 1064nm (Nd:YAG), continuous emission
- Complex system to match the size, position and power to the ITF

Residual mirror movement

TARGET:

Bring the interferometer to its working point: Dark Fringe + Cavities on resonance

PROBLEM:

- → Residual seismic noise (~1µm rms, ~1µm/s) moves the mirrors both angularly and longitudinally → working point of each DOF is crossed in a random way
- Active control is necessary to keep the ITF at its working point
 - → <u>4 longitudinal</u> DOFs (lengths) + <u>frequency stabilization</u> (laser)
 - → <u>16 angular DOFs</u> (Cavities, PR, BS and Input beam)

Longitudinal DOFs

Working point of maximum sensitivity:

- → Arm cavities and PRC → <u>Resonance</u>
- → Michelson → Dark Fringe

Longitudinal Degrees Of Freedom

$$CARM = \frac{l_{north} + l_{west}}{2}$$
$$DARM = \frac{l_{north} - l_{west}}{2}$$
$$MICH = l_{NI} - l_{WI}$$
$$PRCL = l_{PR} + \frac{l_{NI} + l_{WI}}{2}$$

Estimation of the required control

- → DARM ~ 6·10⁻¹² m
- → MICH ~ 2·10-9 m
- → PRCL ~ 7.10⁻¹¹ m

Active control: feedback loop

Control loops are composed of: $Plant \rightarrow Error signal \rightarrow Control Filter \rightarrow Actuator \rightarrow Plant$

Data Acquisition system

Detection layout

1st generation of GW detectors

- 1st generation served as a proof of the working principle
 - → No detection was made → 2nd generation improve sensitivity by a factor 10!

Best Initial Virgo sensitivity (2011) 12 Mpc BNS range

Advanced Virgo upgrades

Reduce thermal noise:

Increase the *mirror masses*

 $h_{therm} \propto 1 / (m \cdot w)$

 Geometry of the arm cavities changed → waist in the middle to increase beam size on the mirrors

Reduce shot noise:

 Increase finesse of the arm cavities ~ <u>450</u> (factor 3 wrt Initial Virgo)

Reduce diffused light

- Detection benches suspended and in vacuum
- New system of baffles in strategic places to absorb diffused light

Advanced Virgo sensitivity

Advanced Virgo joined the Avanced LIGO interferometers on the O2 data taking the 1st of August with ~80 % of duty cycle and ~26 Mpc of BNS range

