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Gravitational waves:
sources and properties
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Gravitational waves (GW)
 One of the first predictions of general relativity (1916)
Accelerated masses induce perturbations of the spacetime

which propagate at the speed of light
 Linearization of the Einstein equations (g =  + h, |h| << 1)

leads to a propagation equation at the speed of light gravity far from the source

 Traceless and transverse (tensor) waves 
 2 polarizations: « + » and «  »

 Quadrupolar radiation
 Need to deviate from axisymmetry to emit GW
 No dipolar radiation – contrary to electromagnetism

 GW amplitude h is dimensionless
 Scales with the inverse of the distance from the source
 GW detectors sensitive to amplitude (h1/d) and not intensity (h21/d2)
 Important to define the Universe volume a given detector is sensitive to
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Effect of gravitational waves on test masses
 In 3D
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A diversity of sources
 Rough classification
 Signal duration
 Frequency range
 Known/unknown waveform
Any counterpart (E.M., neutrinos, etc.) expected?

 Compact binary coalescence
 Last stages of the evolution of a system like PSRB 1913+16
 Compact stars get closer and closer while loosing energy through GW
 Three phases: inspiral, merger and ringdown
 Modeled via analytical computation and numerical simulations
 Example: two masses M in circular orbit (fGW = 2 fOrbital)

 Transient sources (« bursts »)
 Example: core collapses (supernovae)

 Permanent sources
 Pulsars, Stochastic backgrounds 6
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Gravitational wave spectrum
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Gravitational wave detectors
 Ground-based
 Resonant bars (Joe Weber’s pioneering work)
 Narrow band, limited sensitivity: not used anymore
 Interferometric detectors
 LIGO, Virgo and others
 2nd generation (« advanced ») detectors started operation

Design studies have started for 3rd generation detectors (Einstein Telescope)
 Pulsar Timing Array (http://www.ipta4gw.org) 
 GW would vary the time of arrival pulses emitted by millisecond pulsars

 In space 
 Future mission eLISA (https://www.elisascience.org, 2030’s)
 Technologies tested by the LISA pathfinder mission, sent to space last December
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The Virgo 
collaboration
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The Advanced Virgo detector scheme
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The Virgo site
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If Virgo were located in Linköping…
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Virgo



The Virgo Collaboration
 6 European countries

 21 laboratories

About 300 members (LIGO : 750)
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The Virgo Collaboration
 6 European countries

 21 laboratories

About 300 members (LIGO: 750)

 Virgo was built by 11 CNRS (France)
and INFN (Italy) laboratories
 Budget: ~150 M€
 Groups from the Netherlands, Poland,

Hungary and Spain joined later the project

Advanced Virgo funding: ~20 M€
 Plus in-kind contribution from NIKHEF

 The EGO (European Gravitational Observatory)
consortium is managing the Virgo site in Cascina.
It provides the infrastructures and ressources to
ensure the detector construction and operation
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From initial to advanced detectors
 Goal: to improve the sensitivity by one order of magnitude
 Volume of observable Universe multiplied by a factor 1,000
 Rate should scale accordingly
Assuming uniform distribution of sources (true at large scale)

A wide range of improvements 
 Increase the input laser power
Mirrors twice heavier
 Increase the beamspot size on the end mirrors
 Fused silica bonding to suspend the mirrors
 Improve vacuum in the km-long pipes
 Cryotraps at the Fabry-Perot ends
 Instrumentation & optical benches

under vacuum

Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV)
 Financial crisis in 2008-2010…
 aLIGO ready for its first « observation run » in September 2015
AdV upgrade completed mid-2017 15



A global network
of gravitational-wave

interferometric detectors

16



A network of interferometric detectors
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LIGO Hanford
Washington State, USA

LIGO Livingston
Louisiana, USA

Virgo Cascina (near Pisa), Italy



A network of interferometric detectors
A single interferometer is not

enough to detect GW
 Difficult to separate a signal

from noise confidently
 There have been unconfirmed

claims of GW detection

 Need to use a
network of interferometers

Agreements (MOUs) between the
different projects – Virgo/LIGO: 2007
 Share data, common analysis,

publish together

 IFO: non-directional detectors;
non-uniform response in the sky

 Threefold detection: reconstruct
source location in the sky 18

t
Livingston

t
Hanford

t
Virgo

SOURCE

GHOST

IFO 
Pair

t max 
(ms)

V-H 27.20

V-L 26.39

H-L 10.00



Exploiting multi-messenger information
Transient GW events are energetic
 Only (a small) part of the released energy is converted into GW
 Other types of radiation released: electromagnetic waves and neutrinos 

Astrophysical alerts  tailored GW searches
 Time and source location known ; possibly the waveform 
 Examples: gamma-ray burst, type-II supernova

 GW detectors are also releasing alerts to a worldwide network of telescopes
Agreements signed with ~75 groups – 150 instruments, 10 space observatories

 Low latency h-reconstruction and data transfer between sites
 Online GW searches for burst and compact binary coalescences 19



Interferometer angular response
An interferometer is not directional: it probes most of the sky at any time
More a microphone than a telescope!

 The GW signal is a linear combination of its two polarisations 
h(t) = F+(t)  h+(t) + F(t)  h(t)

 F+ and F are antenna pattern functions which depend on
the source direction in the sky w.r.t. the interferometer plane
 Maximal when perpendicular to this plane
 Blind spots along the arm bisector (and at 90 degres from it)
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Virgo antenna pattern
 Two optimal directions
 Zenith and nadir

 Four blind spots
All in the detector plane
Along the arm bissector and at 90 degrees from that
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LIGO-Virgo antenna patterns
 LIGO detectors  co-aligned

 Virgo has a different orientation 
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Virgo O2 data taking
August 1 – August 25

2017 
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4 weeks of Virgo data taking in a nutshell
 Duty cycle stripchart
 Green  Data taking in science mode

 ‘Segments’ (vertical colored bands) are drawn from the longest to the shortest
 Short segments look more visible than their actual weight in the dataset
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4 weeks of Virgo data taking in a nutshell
 Duty cycle pie chart
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4 weeks of Virgo data taking in a nutshell
 Daily duty cycle
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Bad weather conditions
 High seismic activity



4 weeks of Virgo data taking in a nutshell
 Binary neutron star (BNS) range
 Figure of merit summarizing the detector sensitivity
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Global network data taking
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LIGO
Hanford

LIGO
Livingston
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Global
network

 Network duty cycle
 Single detectors:  Network:

Green  Good science data

 Synchronized maintenance periods clearly visible 



Global network data taking
 Pie charts comparing the LIGO and LIGO-Virgo network performances
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Global network data taking
 Comparing typical August 2017 sensitivities

30



2015-2017:
the first detections

of gravitational waves
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1916-2018: a century of progress
 1916: GW prediction (Einstein)

 1963: rotating BH solution (Kerr) 

 1990’s: CBC PN expansion
(Blanchet, Damour, Deruelle,
Iyer, Will, Wiseman, etc.)

 2000: BBH effective one-body
approach (Buonanno, Damour)

 2006: BBH merger simulation
(Baker, Lousto, Pretorius, etc.)
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1957: Chapel Hill Conference      (Bondi, Feynman, Pirani, etc.)

 1960’s: first Weber bars

 1970: first IFO prototype (Forward)
 1972: IFO design studies (Weiss)
 1974: PSRB 1913+16 (Hulse & Taylor)

 1980’s: IFO prototypes (10m-long)
(Caltech, Garching, Glasgow, Orsay)
 End of 1980’s: Virgo (Brillet, Giazotto)

and LIGO proposals

 1990’s: LIGO and Virgo funded

 2005-2011: initial IFO « science » » runs

 2007: LIGO-Virgo MoU

 First half of the 2010’s:  Upgrades

 2015: First Advanced LIGO run
 2017: First Advanced Virgo run
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LIGO and Virgo data taking periods
 Pluriannual upgrade program of the LIGO and Virgo detectors
 Ultimate goal: to increase the instrument sensitivity by one order of magnitude
 Increase the volume of Universe probed by a factor 1,000

 Observation Run 1 (« O1 »): September 2015  January 2016
 LIGO detectors only
 First two detections of gravitational-wave (GW) signals
 GW150914 (detected on 2015/09/14) and GW151226
 In both cases the coalescence of two stellar-mass black holes

 Observation Run 2 (« O2 »): November 30, 2016 – August 25, 2017
Maintenance and upgrade in between O1 and O2 for the LIGO detectors
 First the two LIGO detectors, then LIGO and Virgo from August 1st

More binary black hole mergers: GW170104, GW170608, GW170814
 First binary neutron star merger: GW170817

 Then, one year of upgrade before starting the Observation Run 3 (« O3 »)
 In Fall 2018, for about one year
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GW150914 
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September 14 2015, 11:51 CET
 Signal detected in both LIGO detectors, with a 7 ms delay
 Short (< 1 s)
 Very strong/significant
 Signal expected from a binary black hole coalescence

36

Event labelled
GW150914



February 11 2016, 16:30 CET

 Simultaneous press conferences in Washington DC, Cascina (Virgo site, Italy),
Paris, Amsterdam, etc.

 Detection paper, accepted on PRL, made available online
 Published by the LIGO and Virgo collaborations
 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102

 Several « companion » papers online at the same time – or shortly thereafter
 See full list at https://www.ligo.caltech.edu/page/detection-companion-papers 37



In between these two dates…
Make sure that the signal was not a simulated waveform
 For instance a « blind » injection – or someone hacking LIGO!

 Check the detector status at/around the time of the event 

 « Freeze » the detector configuration
 To accumulate enough data to assess the signal significance

 Rule out the possibility of environmental disturbances producing that signal

 Run offline analysis to confirm/improve the online results

 Extract all possible science from this first/ unique (so far) event

Write detection paper and the associated « companion » papers
 Detection paper had to be accepted prior to making the result public

 Keep GW150914 secret, hope for the best
Any of the items above could have been a showstopper 38



Rapid response to GW150914
 2015/09/14 11:51 CET: event recorded – first in Livingston, 7 ms later in Hanford

 3 minutes later : event flagged, entry added to database, contacts notified 
 Online triggers important in particular for searches of counterparts

 1 hour later: e-mails started flowing within the LIGO-Virgo collaboration

 20 minutes later: no signal injected at that time
 Confirmed officially at 17:59 that day – blind injections useful to test pipelines

 10 minutes later: binary black hole candidate

 25 minutes later: data quality looks OK in both IFOs at the time of the event

 15 minutes later: preliminary estimates of the signal parameters
 False alarm rate < 1 / 300 years: a significant event!

 Two days later (09/16, 14:39 CET): alert circular sent to follow-up partners 39



Compact binary coalescence search
Well-predicted waveform
 Matched-filtering technique (optimal)
 Noise-weighted cross-correlation of

data with a template (expected signal)

 Parameter space covered by a
template bank
Analytical for NS-NS, BH-NS
Analytical + numerical for BH-BH
 Parameters: mass and spin

of the initial black holes
 ~250,000 templates in total

 Look for triggers from the two IFOs
using the same template and coincident in time
 Check matching between signal and template

 Offline search
 Part of the parameter space searched online
 Two independent offline pipelines 40

FT of the data Signal template

Noise power spectral density
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 Detector configuration frozen to integrate enough data for background studies
 ~40 days (until end of October) corresponding to 16 days of coincidence data
 Steady performances over that period

 Tens of thousands of probes monitor the 
interferometer status and the environment
 Virgo:    h(t) ~ 100 kB/s

DAQ ~ 30 MB/s

 Help identifying couplings
with GW channel 
 Quantify how big a disturbance should

be to produce such a large signal
 Not to mention the distinctive shape

of the GW150914 signal

 Extensive studies performed
 Uncorrelated and correlated noises
 Bad data quality periods identified and vetoed
 Clear conclusions:  nominal running, no significant environmental disturbance

Data quality
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 Studies show that GW150914 is not due to issues with the interferometer running,
nor the reflection of environmental disturbances (correlated or not)
 How likely is it to be due to « expected » noise fluctuations?
Assess signal significance!

 Input: 16 days of coincidence data 
 Time shift method to generate a

much larger background dataset

 Reminder: real GW events are shifted
by 10 ms at most between IFOs
 Light travel time over 3,000 km

 By shifting one IFO datastream by a
(much) larger time, one gets new
datastreams in which « time »
coincidence are necessarily due to noise
 16 days of coincident data  tens of thousands years of background « data » 

Background estimation
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Signal significance – CBC analysis
 x-axis: detection

statistic used to
rank events
(the « SNR »)
 GW150914:

strongest
event (true in
both IFOs)

 Observed
(zero-lag)
events

 Solid lines:
2 background
estimations
(from time-lag)

 SNR ~ 23.6; false alarm rate < 1 event / 203,000 years 
false alarm probability  < 210 (> 5.1 ) 44



Why two black holes?
 Result of matched filtering!
 Excellent match between

the best template and the
measured signal

 Two massive compact objects
orbiting around each other at
75 Hz (half the GW frequency),
hence at relativistic speed,
and getting very close before
the merging: only a few RS away!

 Black holes are the only
known objects which can
fit this picture

About 3 MSun radiated in GW

 The « brighest » event ever seen
More powerful than any gamma-ray burst detected so far
 Peak power larger than 10 times the power emitted by the visible Universe 45



GW151226  
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GW151226
 Observed on ‘Boxing Day’ 2015
 Online trigger from the matched filtering analysis
 Not detected by the burst online search
 Detailed studies delayed by the completion of the GW150914 analyses

 Not all GW signals
visible to the naked eye!

Another binary black
hole coalescence

 Lighter black holes
 14 and 8 M

 Smaller amplitude
More cycles in the

detector bandwidth
 Matched filtering mandatory

47



GW170104 
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GW170104
 Second « Observation Run » (O2)
 Started on November 30th 2016
After a ~10 month-long break

for maintenance and upgrade
 End date scheduled for the end of August
 Then there will be a 12-18 month-long stop

before the start of O3 for LIGO and Virgo

A third binary black hole coalescence 
 Primary black holes: about 31 and 

19 solar masses
 Final black hole: about 49 solar masses
 Source located about 3 billion light-years away
 Twice as far as the first two events

 First detection during O2
 January 04th 2017 at 11:11:59 CET

10:11:59 UTC
49



 15 parameters total
 Initial masses, initial spins, final mass, final spin,

distance, inclination angle + precession angle (if exists)

 Bayesian inference
 Probability density function for each parameter: mean value + statistical errors

 : Parameters
 d: Data
 H: Model

 Compare results
from different models
 Systematic errors

JN

m1

m2 dL

S1

S2

Parameter estimation
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Parameter estimation
 Impact of the black hole parameters on the waveform
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Parameter fitting
Animation based on GW170104 data
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GW170814 
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GW170814 detected signals
 Detailled studies confirm evidence of a signal in the Virgo detector
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LIGO-Virgo sky localization
 Triangulation
 Delays in the signal arrival time between detectors
 Difference in shape and amplitude for the detected signals
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LIGO-Virgo sky localization
 Global 3-detector network: much-improved sky localization
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GW170817 

57



Thursday August 17, 2017 – 14:41 CEST
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 Signals recorded within 1.7 second
 LIGO (gravitational waves) first
 Then the GBM instrument (gamma ray burst) on board the Fermi satellite



Gravitational waves from GW170817
 Lower sensitivity + antenna pattern!
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Sky localizations & source position
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 Green: LIGO and LIGO + Virgo

 Blue : information from gamma ray burst satellites

 Optical discovery (Swope)



Detections
 Five binary black hole coalescences
 GW150914, GW151226, GW170104, GW170814, GW170608
 One neutron star coalescence: GW170817
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Detections
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