# <u>Computational Cost for Stochastic GW Background Search</u>

**PyStoch**<sup>\*</sup> makes maps of the entire sky in different frequencies of the GW.

## **PyStoch Features**

- Python based code.
- **Dependencies**: gwpy, lalframes.
- Primarily does matrix multiplications.
- Can use multi-threading.
- Scalable, Memory requirement can be tuned at the cost of (real) time.
- Works for any baseline (HL,LV,LVK etc.) •

There are a few other SGWB search pipelines (e.g. isotropic). But PyStoch is the most demanding one.

## Testing on

Idas-pcdev2.gw.iucaa.in

A 32 Cores (Intel Xeon Gold 6142) machine with 200 GB RAM

## Intel Xeon Gold 6142

| Processor clock speed                 | 2.6GHz   |
|---------------------------------------|----------|
| # of Cores                            | 16       |
| # of Threads                          | 32       |
| Double Precision (DP) FLOPS per cycle | 32       |
| Maximum node DP GFLOP/s               | 2662.4** |

\*\* https://arxiv.org/abs/1904.04250

\* https://git.ligo.org/anirban.ain/PyStoch

## All-Sky, All-Frequencies Radiometer Search (PyStoch)

## **O3A Analysis Cost**

- O3A Data was split into 11 parts, each 2 weeks long.\*
- Analysis was done in 32 threads.
- Time for an example run:
  - o real 161m35.019s
  - o user 3657m18.161s
  - o sys 237m50.257s
- This is only HL baseline. Including Virgo will increase the time by a factor of 3.



#### CPU Load (https://ldas-jobs.gw.iucaa.in/ganglia)

\*this is not the optimum way.

Intel Xeon Gold 6142 (2.6GHz, DP GFLOP/s 2662.4)

## All-Sky, All-Frequencies Radiometer Search (PyStoch)

### **O3A Analysis Costs**

- Memory used was within 70GB.
- Minimum Memory requirement 19GB.
- Memory requirement increases with number of threads.
- Memory requirement does not increase with baseline.
- Results are 6GB HDF5 files.
- 11 result files for 11 sets (66GB).



Memory Load (https://ldas-jobs.gw.iucaa.in/ganglia)

Intel Xeon Gold 6142 (2.6GHz, DP GFLOP/s 2662.4)