Multi-messenger astrophysics

M. Branchesi Gran Sasso Science Institute INFN/LNGS and INAF

SN1987A

A Star Explodes, Providing New Clues To the Nature of the Universe

BANG!

50

40

m

After 30 years..

Kamiokande

GW 170817

The case of GW 170817

GW 170817

Credits: Ronchini

GW 170817

 $\Gamma(heta)$

Forward shock from a structured jet

From Ghirlanda et al. 2019

Credits: Ronchini

Radioactively powered transients

17 August 2017, 12:41:04 UT

GW170817

Abbott et al. 2017, PhRvL, 119

17 August 2017, 12:41:04 UT

ata SIO NOAA, U.S. Navy NGA

GW170817

Credit: LIGO/Virgo/NASA/Leo Singer

GW observables

GW170817: PARAMETERS OF THE SOURCE

23 < *f /Hz* < 2048 Analysis uses source location from EM

• Mass range 1.0 – 1.89 Mo

Masses are consistent with the masses of all known neutron stars!

Abbott et al. 2018, arXiv1805.11579

NS LABORATORY FOR STUDYING SUPER-DENSE MATTER

From only GWs we cannot say both components of the binary were NS

EM non-thermal emission

Short Gamma Ray Burst

Prompt emission Y-ray within seconds Afterglow emission Optical, X-ray, radio hours, days, months

GRB 170817A

- 100 times closer than typical GRBs observed by Fermi-GBM
- it is also "subluminous" compared to the population of long/short GRBs
- $10^2 10^6$ less energetic than other short GRBs

Abbott et al. 2017, APJL, 848, L13

First short GRB viewed off-axis?

After 150 days from the BNS merger...

..achromatic flux–rise until ~ 150 days!

D'Avanzo et al. 2017, A&A

RADIAL or ANGULAR STRUCTURE?

Mildly relativistic isotropic outflow (choked jet)

Structured Jet (successful) off-axis jet

[see e.g. Rossi et al. 2002, Zhang et al. 2002, Ramirez-Ruiz et al. 2002, Nakar & Piran 2018, Lazzati et al. 2018, Gottlieb et al. 2018, Kasliwal 2017, Mooley et al. 2017, Salafia et al. 2017, Ghirlanda et al. 2019]

After 150 days from the BNS merger...decaying phase!

MULTI-WAVELENGTH LIGHT CURVES CANNOT DISENTANGLE THE TWO SCENARIOS!

[Margutti, et al. 2018, Troja, et al. 2018, D'Avanzo et al. 2018, Dobie et al. 2018, Alexander et al. 2018, Mooley et al. 2018, Ghirlanda et al. 2019]

SIZE CONSTRAINTS

Observations 207.4 days after BNS merger by global VLBI network of 33 radio telescopes over five continents constrain SOURCE SIZE < 2 mas

Ghirlanda et al. 2019, Science

See also Mooley, Deller, Gottlieb et al. 2018

SIZE CONSTRAINTS

Ghirlanda et al. 2019, Science

Ruled out nearly isotropic, mildly relativistic outflow , which predicts proper motion close to zero and size > 3 mas after 6 months of expansion

Ghirlanda et al. 2019, Science

A relativistic energetic and narrowly-collimated jet successfully emerged from neutron star merger GW170817!

Thermal-emission

Kilonova

Tidal-tail ejecta → r-process

Neutron capture rate much faster than decay, special conditions: $T > 10^9$ K, high neutron density 10^{22} cm⁻³

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power short lived RED-IR signal (days)

Li & Paczynski 1998; Kulkarni 2005 Metzger et al. 2010; Tanaka et al. 2014; Barnes & Kasen 2013

Shock-heated ejecta, accretion disc wind outflow, secular ejecta

- Weak interactions: neutrino absorption, electron/positron capture
- Higher electron fraction, no nucleosynthesis of heavier element
- Lower opacity
 - brief (~ 2 day) blue optical transient

Kasen et al. 2015, Perego et al. 2014, Wanajo et al. 2010

UV/Optical/NIR Light Curves

Extremely well characterized photometry of a Kilonova: thermal emission by radiocative decay of heavy elements synthesized in multicomponent (2-3) ejecta!

First spectral identification of the kilonova emission

- the data revealed signatures of the radioactive decay of r-process nucleosynthesis (Pian et al. 2017, Smartt et al. 2017)
- BNS merger site for heavy element production in the Universe!

(Cote et al. 2018, Rosswog et al. 2017)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO/L. Calçada

1 H	Periodic Table of the															2 He	
3 Li	4 Be			m	5 B	6 C	7 N	8 O	9 F	10 Ne							
11 Na														15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89 Ac	90 Th	91 Pa	92											

Yellow: Formed by Merging Neutron Stars

Credit:Jennifer Johnson/SDSS

identification of the neutron-capture element **strontium**

See also Perego et al. 2021

Watson, D. et al. 2019 Nature

Multi-messenger studies

GRB/GW FUNDAMENTAL PHYSICS/COSMOLOGY

GRB/GW delay

 $\Delta t = (1.74 \pm 0.05) \, s$

 → difference speed of gravity and speed of light between

$$-3\,\times\,10^{-15}\leqslant\frac{\Delta v}{v_{\rm EM}}\leqslant+7\,\times\,10^{-16}$$

GWs propagate at the speed of light to within 1:10¹⁵! LVC 2017, APJL, 848, L13

Consequences of multi-messenger detection of GW170817 for cosmology Constraint on the speed of GWs ruled out many classes of modified gravity models (quartic/quintic Galileons, TeVeS, MOND-like theories, see, e.g., Baker et al. '17, Creminelli & Vernizzi '17)

GRAVITATIONAL-WAVE COSMOLOGY:

Abbott et al. 2017, Nature, 551, 85A

- Recession velocity /redshift
 - GW distance

MULTIMESSENGER CONSTRAINTS ON NUCLEAR EOS

EM observations \rightarrow Mej,tot > 0.05Mo \rightarrow lower limit Λ > 400

Radice, Perego, Zappa, Bernuzzi 2017

EM observations exclude very soft EOS!

Radioactively powered transients

NO OTHER FIRM EM COUNTERPARTS: large sky-localization and fainter counterparts to be searched...

The future of GW and Multimessenger astronomy

See GWIC roadmap, Bailes et al. 2021, Nature Reviews Physics

ET: the European 3G GW observatory concept

Triangular shape Arms: 10 km Underground Cryogenic Increase laser power Xylophone

Worldwide effort: Cosmic Explorer

Cosmic Explorer: L shaped detectors, two sites (40km, 20 km [option])

EXPECTED SENSITIVITY

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

Detection horizon for black-hole binaries

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

POPULATION:
increase number of detections

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

Sampling **astrophysical populations** of binary system of compact objects along the cosmic history of the Universe

BINARY BLACK-HOLE MERGERS

 10^{4} - 10^{5} BNS detections per year 10^{4} - 10^{5} BBH detections per year

Radioactively powered transients

Kilonova/GW - EOS constraints Kilonova/GW - Nucleosynsthesis GRBs – BNS/NSBH merger up to high z **Relativistic jet properties Jet-less/jet GRBs GRB/stable NS remnant** Link to Star Formation History

Emission mechanism

Cosmology

population of BNS
detections along the cosmic history

Large increase of detection rate

Better parameter estimation

•

 Higher chance to detect other sources and counterparts: core-collapse SN, new-born neutron stars, magnetars, FRBs, neutrinos

ET sky-localization capabilities

ET low frequency sensitivity make it possibile To localize BNS!

- O(100) detections per year with sky-localization (90% c.r.) < 100 sq. deg
- Early warning alerts!

Network sky-localization capabilities

Cosmic Explorer

0

O(1000) detections per year with sky-localization (90% c.r.) < 10 sq. deg

Network sky-localization capabilities

O(1000) detections per year with sky-localization (90% c.r.) < 1 sq. deg

Hundreds of MM events per year!

See Ronchini et al. 2022

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

Credit: Ronchini

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and H0 ESTIMATE

> XIS E

> > Image credit: NASA Goddard Space Flight Center

A REVOLUTION IN OUR KNOWLEDGE OF THE EARLY UNIVERSE, FUNDAMENTAL PHYSICS AND ASTROPHYSICS...

