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Agenda
Advances in AI: 
• Transformers

• Applications: 

✴AlphaCode

✴Language + Visions 

(Flamingo)

✴Generalist multimodal 

multitask models (Gato)

• Scaling Laws

• Perceivers

• Stable Diffusion


• Graph Neural Networks

• Applications: 

✴Generalist CLRS algorithmic 

task learner

✴GNNs in HEP

✴GNNs for n-body simulation 

and mesh simulation

• Weather nowcasting with 

GANs



I am here because I love to design
presentations.

Hello!
I Am John Miller

You can contact me at @username

Hi.
Who am I?

B.A. in Physics, B.A. in Astrophysics,
U.C. Berkeley

Ph.D. in Physics, Yale University
Thesis: Machine Learning Solutions for High 
Energy Physics: Applications to Electromagnetic 
Shower Generation, Flavor Tagging, and the 
Search for di-Higgs Production 
[arXiv:1903.05082]

Former Member, 
ATLAS Collaboration, CERN

Visiting Affiliate, 
NERSC

Postdoctoral Researcher, 
Facebook AI Research

3

Previously…

Senior Research Scientist, 
DeepMind

https://arxiv.org/abs/1903.05082


Transformers
Fully-connected layers strike back!

• Powerful because fast and suitable for current 
hardware (“hardware lottery”)


• Applicable to every domain!


• Self-attention (fully connected transformations 
QKV) to take into consideration context


• O(n^2) attention but lots of alternative 
solutions


• MLP layers to transform representation


• Skip connections to carry information



Transformers

Each attention head generates a context weighting 
for each token



Transformers Applied

AlphaCode Flamingo Gato



Gato 🐈
A generalist model

Everything is a token and a big Transformer is all you need!



Gato 🐈
Tokenizing multiple modalities



Flamingo 🦩
A multi-modal 
vision+language model 
focused on uni-modal 
model reuse



Flamingo 🦩
Paper: arxiv.org/abs/2204.14198

Cross-attending to the vision representations and interleaving these with 
frozen language model layers

https://arxiv.org/abs/2204.14198


Flamingo 🦩

Vision input

Paper: arxiv.org/abs/2204.14198

Cross-attending to the vision representations and interleaving these with 
frozen language model layers

https://arxiv.org/abs/2204.14198


Perceivers
Inexpensive multi-modality processing

• Evolve small latent representation through asymmetric cross-attention to multimodal 
input data


• Can be done iteratively by stacking layers


• Spatial or temporal information is crucial for many modalities, and it is often 
essential to distinguish from one modality to another in multimodal contexts. —> 
associate position and modality-specific features with every input element


• Used in Flamingo’s resampler
From Flamingo 🦩 



Sparrow

Paper: https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf

Blog: https://www.deepmind.com/blog/building-safer-dialogue-agents

https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf
https://www.deepmind.com/blog/building-safer-dialogue-agents


Why families of language models?

Interest in language models as scientific objects → view them as 
parameterized objects which have observable characteristics


For scale, parameterization is (# params, dataset size)


As with any physical system, want to understand critical points and 
limit behavior / asymptotes


If I double the param count and double training data, what will happen?


Allows for counterfactuals → science!

…these models are expensive, we want to know if real investments are 
worth pursuing

🐀 🐈 🦩



Scaling laws for LSLMs (Kaplan et al 2020)

• Original OpenAI paper in 2020, Scaling Laws for Neural Language Models


• Performance improves with model and dataset scale, following power laws

arXiv:2001.08361


https://arxiv.org/abs/2001.08361


Predictability in Performance (Kaplan et al 2020)


Scaling laws allow for comparison of families of models 
across scales, generalizing from individual model 

comparisons.

arXiv:2001.08361


Can fit a function to express how the test loss of an 
autoregressive transformer predictably increases with 

compute over orders of magnitude.

https://arxiv.org/abs/2001.08361


Routing Networks
• Split MLP layers 

in transformers 
into a set of 
experts


• Learn a router 
that decides 
which expert to 
route each token 
through 



Dense layers are split into E copies 
with different initial parameters


Each token is routed to one (or more) 
dense block expert


→ Increases parameter counts, but 
keeps inference-time FLOPs identical 
as experts are added


Needs learning strategy for the router

ρ(x)

Branched models

arXiv:2202.01169


https://arxiv.org/abs/2202.01169


Branched models
In the context of our LSLMs, we analyze three routing techniques:

- Routing via Reinforcement Learning (RL-R):  each router is seen as a policy whose 

actions are the selection of an expert in each routed layer and whose observations are the 
activations passed to that router. After completing the forward pass, the probability the 
Routed Transformer assigns to the correct output token can be used as a reward, 
maximization of which is equivalent to minimization of NLL. To jointly train the experts and 
the router, we minimize a composite loss formed with the language modelling loss and a 
policy-gradient term. 

- Sinkhorn-BASE (a sparse mixture-of-experts (SMOE) approach modifying BASE): ρ(x) = 
topk(W x + b), with k = 1 (instead of >1); h(x) = P i∈ρ(x) gi(x)fi(x),   
g(x) = softmax(W x + b) with regularized Optimal Transport using the Sinkhorn algorithm for 
balanced expert selection (instead of Hungarian algorithm) 

- Non-parametric HASH Layers: takes the token ID assigned to the input by the 
SentencePiece tokenizer and uses the remainder of it divided by E as the expert selection

arXiv:2202.01169


https://arxiv.org/abs/2202.01169


Branched models (results)
Analysis of three routing techniques, with 


E = [2, 4, 8, 16, 32, 64, 128, 256, 512]


With models up to 200 billion parameters, we observe the following: 


1. Routing improves the performance of language models across all 
sizes and variants attempted 


2. Training a Routing Network with RL is of comparable effectiveness 
to state-of-the-art techniques. 


3. The performance of all Routing Networks is accurately described 
by scaling laws in the number of experts and in the underlying dense 
model size 


4. These laws can be restated in terms of parameter count and 
inference compute, capturing an even wider set of routing 
architectures under a shared fit


5. They further imply an Effective Parameter Count: a mapping 
equating the performance and scaling for both dense and routed 
networks

arXiv:2202.01169


https://arxiv.org/abs/2202.01169


Stable Diffusion
• Forward Diffusion (training-only): 

data —> noise, by iterative perturbing data via Gaussian diffusion kernel


• Backward Denoising Process: 
noise —> data, by reversing the forward diffusion process via iterative denoising



Stable Diffusion
Original Diffusion paper: arxiv.org/abs/2112.10752

Encode into smaller latent space first Corrupt the latent representation with noise

Condition generation through concatenation 
 or cross-attentionDenoise with a U-Net

Decode back out to image space

https://arxiv.org/pdf/2112.10752.pdf


Stable Diffusion

• Incredible quality of results!


• Iterative process


• Can be cumbersome and slow



Graph Neural Networks
• A great resource: https://distill.pub/2021/gnn-intro/

• Input data format: graph


•Tasks like: node feature prediction, 
edge feature prediction, edge or node 
classification, graph feature prediction 
or classification


•Learn weights for update of local 
features at node or edges.


•Stack as many layers as desirable.


•Repeat as many iterations of updates 
as needed.


•Pool and aggregate from nearby 
regions.

https://distill.pub/2021/gnn-intro/


Graph Neural Networks
A Generalist Neural Algorithmic Learner
• Heterogeneous inputs (and outputs) represented as graphs


• A single GNN processor capable of generalizing to out-of-distribution input lengths

Paper: https://arxiv.org/pdf/2209.11142.pdf

https://arxiv.org/pdf/2209.11142.pdf


GNNs in HEP
From: 


https://github.com/iml-wg/HEPML-LivingReview

https://github.com/iml-wg/HEPML-LivingReview


Graph Neural Networks
Science Applications

MeshGraphNetworks

https://arxiv.org/pdf/2010.03409.pdf

Learning to Simulate Complex Physics with Graph Networks

https://arxiv.org/pdf/2002.09405.pdf

https://arxiv.org/pdf/2010.03409.pdf
https://arxiv.org/pdf/2002.09405.pdf


AI for Science
Nowcasting with GANs

• Predicting next 2 hour precipitations


• Spatial and temporal changes 
modeled with discriminators


• Inductive biases from application 
domain


• Blind study with meteorologists to 
evaluate performance



Thanks
Opportunities:

Science Software Engineer (London) 
https://grnh.se/256d51311us

All internship roles 
deepmind.com/careers/internships

Research Scientist Intern, AI for Sciences, 2023 (London) 
https://grnh.se/2a2e73941us

Research Scientist Intern 2023 (London) 
https://grnh.se/427b13aa1us

Research Scientist (London) 
https://grnh.se/1e09c70b1us

https://grnh.se/256d51311us
http://deepmind.com/careers/internships
https://grnh.se/2a2e73941us
https://grnh.se/427b13aa1us
https://grnh.se/1e09c70b1us


Scaling LSLMs

From the “Scaling Laws” prediction, the field has been constructing larger and 
larger models expecting better and better performance.



Scaling LSLMs: Gopher
Goal: test the limits of scaling laws.


● Family of LMs ranging from 44M to 280B 
parameters


● Surfaces ‘skills’ where scale helps…

○ Reading comprehension, fact-checking, and the 

identification of toxic language, etc.

● …and skills where scale does not seem to 

help.

○ Logical reasoning, common-sense tasks

arxiv:2112.11446

https://arxiv.org/pdf/2112.11446.pdf


Chinchilla: 
Train Smarter, not Bigger Improved scaling laws as a function of training 

set size → data matters more than previously 
expected!


Make optimal use of FLOPs by training 
smaller models on more data.

arXiv:2203.15556

https://arxiv.org/abs/2203.15556


Chinchilla: Train Smarter, not Bigger

“larger, high quality datasets 
will play a key role in any 
further scaling of language 
models”

arXiv:2203.15556

https://arxiv.org/abs/2203.15556


Compression, Sparsity
Hard for pre-training

• SMoE models (Switch, …)


• Hard to prune or distill Gopher


• Hardware co-design to take full advantage



● Learning f  !=  representing f

● In training vs post-training

○ Can be coupled with fine-tuning

● Geared towards inference

● Requires memory budget and ability to train initial dense model → wasteful

How to do this in practice?

Dense2Sparse

Pruning should remove unnecessary redundancy and unused capacity



● weight magnitude, activations, gradients, Hessian, interpretability, credit assignment, random, etc. 
 
 
 
 
 
 
 

● Layer-wise vs global
● Sparsity level
● Unstructured vs structured, etc.
● One-shot vs iterative pruning
● Followed by: finetuning, reinitialization, rewinding
● …

How to Prune
Pruning methods differ across many dimensions:



Sparse2Sparse
Start with a sparse network to reduce memory and training FLOPs

Example: RiGL

Issue: every N iterations, need to compute Top-K over gradient. Efficient implementation?



Sparse2Sparse
Start with a sparse network to reduce memory and training FLOPs

Example: Top-KAST

Start at desired final sparsity with a top-k over weight norms and keep around an extra set of connections 
that are only updated in the backward pass. If these grow large enough, they turn “on” in the forward. 



“While we show modest success in the compression of these models, resulting in small shifts in the scaling curves, on the whole, none of the 
methods we explore are remarkably successful. The general finding is that whilst compressing models for a particular application has seen 

success, it is difficult to compress them for the objective of language modelling over a diverse corpus.”

Sparsifying LSLMs

90% sparsity requires ~2.5× fewer params 
for a given eval loss. However:

- unstructured sparsity is hard to take 
advantage of on most accelerators → 2.5x 
reduction in #params is not sufficient to 
offset the decrease in efficiency of doing 
sparse computations.

- required instantiating 10x larger dense 
model

- sparsifying without appreciable accuracy 
drop only leads to 20-30% sparsity

See “Routing Nets” for most successful example of sparsity in scaling LSLMs!



Interpretability
How do these models really work?

• Mechanistic interpretability:


• Induction heads


• Superposition (see other Anthropic results)


• Decoding of vision+language


•



Towards understanding LSLMs

Mechanistic Interpretability: Approach to interpretability focused on understanding the 
underlying physical mechanisms that correspond to higher level observed behavior in the 
system 
→ find mechanisms that generate the patterns we see


- Examine the phenomena in a network like in a physical system 
(empirical approach)


- Concepts of cause and effect, interventions


- Ability to probe the system, interact with it, test hypotheses


- Assumes modularity of behavior


- Analogous to mechanics in physics (statics + dynamics)


- Start from “what?” and get to “how?”
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https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.htmlhttps://transformer-circuits.pub/2021/framework/index.html

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2021/framework/index.html


Visualization of Induction Heads in our 2-Layer Attention-Only 
Transformers
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Copying arbitrary sequences
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A  series  of  tokens  .  
…

A  series  of [prediction]

1. Find earlier instance

2. Look forward one token

3. Copy whatever’s there



Let’s think about this mechanistically
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A  series  of  tokens  .  
…

A  series  of [prediction]

Can’t expect a copying head to do it - the 
trigram isn’t that likely!



Let’s think about this mechanistically
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A

 series  of  tokens  .  
…

A  series  of [prediction]

Examples from Elhage et al.:
[b]      [a]          [b or b’]

(but there are some “copying heads” that do 
this for more likely sequences)



Let’s think about this mechanistically
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A  series  of  tokens  .  
…

A  series  of [prediction]

Can’t copy directly - we’d just predict “of”



Let’s think about this mechanistically
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A  series  of  tokens  .  
…

A  series  of [prediction]

1. Shift data forward 
one token

(details depend on 
positional encoding)

2. ‘Matching’ WQK 
now matches at 
shifted position

3. Copying WOV increases 
logit of matched (shifted) 

token



Induction in action

49Image from Elhage et al., 2021

https://transformer-circuits.pub/2021/framework/index.html


Induction heads phase change
Replicating Olsson et al. 2022 and Elhange et al. 2021

The occurrence of the phase-transition bump, observed in the learning curve, corresponds to a clear 
phase transition and behavioral change in the model: the model picks up the ability to more easily 

generate correct tokens later on in the context

Training 
steps
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https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2021/framework/index.html


Negative change means that the ability of the model to do in-context learning decreases as that 
head is ablated

mtv3



Interpreting VLMs?







Things to discuss if I have time:

- What are the missing ingredients? Can scale get us all the way? Or 
are we missing some building blocks for reasoning? (Memory, RL, 
inductive biases, invariances, guarantees, explicit knowledge graphs, 
…)

- External memory (memorizing transformers, etc.)


