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Agenda

Advances in Al:  Graph Neural Networks
* Transformers * Applications:
 Applications: X Generalist CLRS algorithmic

X AlphaCode task learner
X Language + Visions XGNNs in HEP

(Flamingo) X GNNs for n-body simulation
X Generalist multimodal and mesh simulation
multitask models (Gato) * Weather nowcasting with
e Scaling Laws GANS

e Percelvers
o Stable Diffusion



HI.

Who am |7

Senior Research Scientist,
DeepMind

Previously...

/\
fFrfrrerer

BERKELEY LAB

A
|||‘

FACEBOOK

B.A. in Physics, B.A. in Astrophysics,
U.C. Berkeley

Ph.D. in Physics, Yale University
Thesis: Machine Learning Solutions for High

Energy Physics: Applications to Electromagnetic
Shower Generation, Flavor Tagging, and the
Search for di-Higgs Production
[arXiv:1903.05082]

Former Member,
ATLAS Collaboration, CERN

Visiting Affiliate,
NERSC

Postdoctoral Researcher,
Facebook Al Research


https://arxiv.org/abs/1903.05082

Transformers W G

Fully-connected layers strike back! NHE:

e Powerful because fast and suitable for current
hardware (“hardware lottery”)

* Applicable to every domain!

o Self-attention (fully connected transformations
QKV) to take into consideration context

 O(n"2) attention but lots of alternative
solutions

 MLP layers to transform representation

» Skip connections to carry information
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Transformers Applied
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AlphaCode Flamingo Gato



Gato ¢

A generalist model

Everything is a token and a big Transformer is all you need!
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What is the capital of
63 France?

Paris. G
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¢S Can you write me a poem?

I don’t know exactly what
to write. There's just so
much to answer.
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Gato ¢

Tokenizing multiple modalities

Atari images
ailcd discrelte aCElaOmS

Text

,[ . \
I'm going to London
IIIIII ) Batched input
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and continuous actions
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Images and
questions

N
(A | |
£::; Q: What's in the picture?
A: It's a cute cat

Batched and masked
shifted targets

£(6,B)

Proprioception

Continuous actions

B Discrete actions



Flamingo *

A multi-modal
vision+language model
focused on uni-modal
model reuse

Perceiver
Resampler
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Paper: arxiv.org/abs/2204.14198

Flamingo *
Cross-attending to the vision representations and interleaving these with
frozen language model layers

Output: text
. Pretrained and frozen

Trained from scratch a very serious cat.
during Flamingo training
\ . R
Perceiver Perceiver i n-th GATED XATTN-DENSE
Resampler Resampler i

| E

1st GATED XATTN-DENSE

Processed text T

<image> This is a very cute dog. <image> This is

Input: text and visual
data interleaved
This is a very cute dog. This is
Visual data L
processing ?



https://arxiv.org/abs/2204.14198

Flamingo *

Cross-attending to the vision representations and interleaving these with

frozen language model layers

Output: text
. Pretrained and frozen

Paper: arxiv.org/abs/2204.14198

Trained from scratch

a very serious cat.

during Flamingo training

Perceiver Perceiver
Resampler Resampler

Processed text

n-th GATED XATTN-DENSE

1st GATED XATTN-DENSE

|

<image> This is a very cute dog. <image> This is

data interleaved

Visual data
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Input: text and visual ‘
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cross attention
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Perceiver Resampler
X_num_layers ____________________ L.l | L.l.____

Perceivers .

Inexpensive multi-modality processing (e ]

I X

____________________

Evolve small latent representation through asymmetric cross-attention to multimodal Xf.Lllimill&lglilmmm [ ‘ » ‘ 1

input data
£=0 £=1 £=2 Learned
;%l ;%I ;él Latent

Can be done iteratively by stacking layers EEE EER EEm @ ..
HEEE BEEE BEER
Spatial or temporal information is crucial for many modalities, and it is often

essential to distinguish from one modality to another in multimodal contexts. —>
associate position and modality-specific features with every input element

Used in Flamingo’s resampler

Perceiver: General Perception with Iterative Attention

From Flamingo

Weights optionally shared between repeats

' I
g = 5 e .
~ & - frr——
G O o 0 = £ o 0 o £ o %
= C B S C = & =
s » O Ch—— —»‘D.E . » O C > >(Dq9—> —_— — - — D
® Z S 2 g 2 S 2 52 I
&S 'l:’ r — ":l > =
>
) T
—
(Ux
s
O N
(a8]




User

When did the current expedition to

the ISS launch?

Sparrow
€S)  on March 30th 2022, with NASA =
a I I Ow astronaut Thomas Marshburn taking
over as ISS commander.

“
The expedition began upon the depar-
ture of Soyuz MS-19 on 30 March 2022,

with NASA astronaut Thomas Marshburn

taking over as ISS commander. Initially,
the expedition consisted of Marshburn
and his three SpaceX Crew-3 crew-
preferred ReS pon Se mates Raja Chari, Kayla Barron and Mat-
tias Maurer, as well as Roscosmos

cosmonauts Oleg Artemyev, Denis Mat

Hel 10 ’ User J preference veev and Sergey Kersakov, who lm.‘n-:?P:;;d
aboard Soyuz M5-21 on March 18, ||

In 1981, .. Modelling oo

What do they do up there?
Sorry, I.. — @

Sparrow
Reinforcement @ They work on science experiments, &
Sparrow model Learning monitor projects that are controlled

from the ground and take part in
medical experiments. They also help

. . keep the ISS in tip-top shape.
Adversarial Probing eep the ISS in tip-top shape

4 )

“ 3 ¢ . .
Astronauts spend their days working

RU].e on science experiments that require
Reward thair input, monitoring projects that are
controlled from the ground and taking

Modelling part in medical experiments to ligure

out how well their bodies adjust to living
Enter message ) in space for long periods of time, Since

\_ ) astronauts live where they work, it's also

)

their responsibility to help keep the ISS

in tip-top shape. Much like homeowners
. . "

do routine maintenan

! A ay N SPRact Here's ".'.‘h'..' i

astronaut's davly routy

User

| always wanted to be an astronaut,

how about you? Would you go?

Sparrow

<‘ § No, I'm not a person. 'm a computer

Paper: https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf program, so | can't go anywhere! But
Blog: https://www.deepmind.com/blog/building-safer-dialogue-agents | do have a lot of knowledge about

space, and I'd be happy to answer
any questions you have.



https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf
https://www.deepmind.com/blog/building-safer-dialogue-agents

Why families of language models?
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Interest in language models as scientific objects — view them as
parameterized objects which have observable characteristics

For scale, parameterization is (# params, dataset size)

As with any physical system, want to understand critical points and
limit behavior / asymptotes

If | double the param count and double training data, what will happen?

Allows for counterfactuals — science!

...these models are expensive, we want to know if real investments are
worth pursuing



arXiv:2001.08361

Scaling laws for LSLMs (Kaplan et al 2020)

* Original OpenAl paper in 2020, Scaling Laws for Neural Language Models

Loss vs Model and Dataset Size
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https://arxiv.org/abs/2001.08361

arXiv:2001.08361

Predictability in Performance (Kaplan et al 2020)

Can fit a function to express how the test loss of an
autoregressive transformer predictably increases with
compute over orders of magnitude.

Test Loss

L = (Cmin/2.3-10°)70-0°0

2
109

10-7 105 10-3 10-!

Compute
PF-days, non-embedding

101

Test Loss 5.4

4.8 1

4.2 1

3.6

3.0

2.4 1

Scaling laws allow for comparison of families of models
across scales, generalizing from individual model

comparisons.

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

LSTMs

1 Layer

N

Transformers

105 106 107 108 109
Parameters (non-embedding)
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Routing Networks

e Split MLP layers
INn transformers
into a set of

experts y )
T ,
® Learn a ro uter [ Add + NTormaIize ]
t h at d eC | d eS [ SwitchingTFFN Layer
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arXiv:2202.01169

amus

BranChed mOdeIS The cat sat on a hippo pot
,"‘~
Dense layers are split into E copies Dense Block 2

with different initial parameters N 0 &

pot amus hippo cat

The on a sat

Each token is routed to one (or more)
dense block expert

— [ncreases parameter counts, but A
keeps inference-time FLOPs identical o T T T o T 5 T o R

as experts are added

i
Needs learning strategy for the router
¢

pot amus

The cat sat on a hippo



https://arxiv.org/abs/2202.01169

arXiv:2202.01169 T

Branched models “”K

In the context of our LSLMs, we analyze three routing techniques: AR

- Routing via Reinforcement Learning (RL-R): each router is seen as a policy whose
actions are the selection of an expert in each routed layer and whose observations are the
activations passed to that router. After completing the forward pass, the probability the
Routed Transformer assigns to the correct output token can be used as a reward,
maximization of which is equivalent to minimization of NLL. To jointly train the experts and
the router, we minimize a composite loss formed with the language modelling loss and a
policy-gradient term.

- Sinkhorn-BASE (a sparse mixture-of-experts (SMOE) approach modifying BASE): p(x) =
topk(W x + b), with k = 1 (instead of >1); h(x) = P icpx Gi(X)fi(X),
g(x) = softmax(W x + b) with regularized Optimal Transport using the Sinkhorn algorithm for
balanced expert selection (instead of Hungarian algorithm)

- Non-parametric HASH Layers: takes the token ID assigned to the input by the
SentencePiece tokenizer and uses the remainder of it divided by E as the expert selection


https://arxiv.org/abs/2202.01169

arXiv:2202.01169

Branched models (resulits)

Analysis of three routing techniques, with
E=12, 4,8, 16, 32, 64, 128, 256, 512]
With models up to 200 billion parameters, we observe the following:

1. Routing improves the performance of language models across all
sizes and variants attempted

2. Training a Routing Network with RL is of comparable effectiveness
to state-of-the-art techniques.

3. The performance of all Routing Networks is accurately described
by scaling laws in the number of experts and in the underlying dense
model size

4. These laws can be restated in terms of parameter count and
inference compute, capturing an even wider set of routing
architectures under a shared fit

5. They further imply an Effective Parameter Count: a mapping
equating the performance and scaling for both dense and routed
networks
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Stable Diffusion

* Forward Diffusion (training-only):
data —> noise, by iterative perturbing data via Gaussian diffusion kernel

 Backward Denoising Process:
noise —> data, by reversing the forward diffusion process via iterative denoising

q(x¢|wo) = N (2| w0, 07 1) (4)
with the Markov structure for s < ¢:
q(zilws) = Nty szs, 07,1) 5)
Q
Qs = — (6)
Ag
Ofs = 0; — 0405 (7)

Denoising diffusion models are generative models p(xg) which revert this process with a similar Markov structure running
backward in time, i.e. they are specified as

p(To) = / p(zr) | [ p(ze—ilze) (8)

t=1



Encode into smaller latent space first

-

/

D

S/

Original Diffusion paper: arxiv.org/abs/2112.10752

Stable Diffusion

Corrupt the latent representation with noise

tixel Spacg

Decode back out to image space

Latent Space
Diffusion Process F———)I

.

Denoising U-Net €

\

V

Q Q

K,V

‘
eA

denoising step crossattention  switch

skip connection concat

Denoise with a U-Net

6onditionin3
emantiq
Map
Text

4 N
Repres
entations

/

76

_ p

Condition generation through concatenation
or cross-attention



https://arxiv.org/pdf/2112.10752.pdf

Stable Diffusion

* |Incredible quality of results!
 [terative process

e Can be cumbersome and slow




Graph Neural Networks

* A great resource: https://distill.pub/2021/gnn-intro/

* Input data format: graph
Input Layer

» Tasks like: node feature prediction,
edge feature prediction, edge or node

classification, graph feature prediction
or classification

O - Learn weights for update of local
features at node or edges.

» Stack as many layers as desirable.

* Repeat as many iterations of updates
» — One-hot vector [0,0,1,0,0] as needed.

* Pool and aggregate from nearby
regions.


https://distill.pub/2021/gnn-intro/

Paper: https://arxiv.org/pdf/2209.11142.pdf

Graph Neural Networks

A Generalist Neural Algorithmic Learner

 Heterogeneous inputs (and outputs) represented as graphs

* A single GNN processor capable of generalizing to out-of-distribution input lengths

\C Processor )

C

—>» O [«

+2+4+3+1

=



https://arxiv.org/pdf/2209.11142.pdf

From:
https://github.com/iml-wg/HEPML-LivingReview

= Graphs

= Neural Message Passing for Jet Physics
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
Probing stop pair production at the LHC with graph neural networks [DOI]
Pileup mitigation at the Large Hadron Collider with graph neural networks [DOI]

Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC [DOI]

>
® f"\é{;‘p @ — e JEDI-net: a jet identification algorithm based on interaction networks [DOI]
_/ , : 7 Learning representations of irregular particle-detector geometry with distance-weighted graph
o "’/;‘7’39‘ \i«\a\ networks [DOI]
< — R
. o 47 ‘ P Interpretable deep learning for two-prong jet classification with jet spectra [DOI]
L1 Neural Network-based Top Tagger with Two-Point Energy Correlations and Geometry of Soft

Emissions [DOI]
Probing triple Higgs coupling with machine learning at the LHC
Casting a graph net to catch dark showers [DOI]
Graph neural networks in particle physics [DOI]
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in
High Energy Physics [DOI]

o Supervised Jet Clustering with Graph Neural Networks for Lorentz Boosted Bosons [DOI]

o Track Seeding and Labelling with Embedded-space Graph Neural Networks

() Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-
o (5] based neutrino detectors [DOI]

o The Boosted Higgs Jet Reconstruction via Graph Neural Network
(] Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs

Particle Track Reconstruction using Geometric Deep Learning

Jet tagging in the Lund plane with graph networks [DOI]

Vertex and Energy Reconstruction in JUNO with Machine Learning Methods

MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks

(b) Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-
LHC

Deep Learning strategies for ProtoDUNE raw data denoising

/ e Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers

Jet Instance Segmentation GNNs for One-Shot Conformal Tracking at the LHC

‘/,‘§b o o Charged particle tracking via edge-classifying interaction networks

Jet characterization in Heavy lon Collisions by QCD-Aware Graph Neural Networks

Lepton Jet o o
. e Ve ‘ Graph Generative Models for Fast Detector Simulations in High Energy Physics

Segmentation of EM showers for neutrino experiments with deep graph neural networks

Anomaly detection with Convolutional Graph Neural Networks

Energy-weighted Message Passing: an infra-red and collinear safe graph neural network
algorithm

( ) (d) Improved Constraints on Effective Top Quark Interactions using Edge Convolution Networks
C . : : :
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
Graph Neural Networks for Charged Particle Tracking on FPGAs

Figure 1: Examples of graph representations of particle physics data: (a) clustering tracking Machine Learning for Particle Flow Reconstruction at CMS
detector hits into tracks, (b) segmenting calorimeter cells, (c) classifying events with multiple An Efficient Lorent= Equivariant Sraph Neuiral Networicior det Tagging

. . . . . . . . End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph
types of physics objects, (d) jet classification based on the particles associated to the jet. neural networks



https://github.com/iml-wg/HEPML-LivingReview

Graph Neural Networks

Science Applications

(b) ENCODER r aN? PROCESSOR
X— — G -+H—Gt --- GM —Y
C Construct graph d Pass messages (e)  Extract dynamics info
V0
¢ ’ ¢ ¢ ¢
¢ o € ﬁ(&e% . ﬁi&ez}“ S N
¢ ¢ x ¢ vi M S\ G\ ¢ ¢ Y
" \‘ % f \L
¢ ¢ ¢ . ¢ e ¢ e C ¢ ¢ ¢«
¢ « ¢ (¥ « «
Learning to Simulate Complex Physics with Graph Networks MeshGraphNetworks

https://arxiv.org/pdf/2002.09405.pdf https://arxiv.org/pdf/2010.03409.pdf



https://arxiv.org/pdf/2010.03409.pdf
https://arxiv.org/pdf/2002.09405.pdf

Al for Science
Nowcasting with GANs

* Predicting next 2 hour precipitations

o Spatial and temporal changes
modeled with discriminators

* |nductive biases from application
domain

* Blind study with meteorologists to
evaluate performance

PySTEPS




Opportunities:

All internship roles Research Scientist Intern, Al for Sciences, 2023 (London) Research Scientist Intern 2023 (London)
deepmind.com/careers/internships https://grnh.se/2a2e73941us https://grnh.se/427b13aalus
Science Software Engineer (London) Research Scientist (London)

https://grnh.se/256d51311us https://grnh.se/1e09¢c70b1us



https://grnh.se/256d51311us
http://deepmind.com/careers/internships
https://grnh.se/2a2e73941us
https://grnh.se/427b13aa1us
https://grnh.se/1e09c70b1us

Scaling LSLMs

From the “Scaling Laws” prediction, the field has been constructing larger and
larger models expecting better and better performance.

Model Size (Billion Parameters) Training Tokens
GPT-3 (Brown et al., 2020) 175B 300 Billion
Jurassic (Lieber et al., 2021) 178B 300 Billion
Gopher (Rae et al., 2021) 280B 300 Billion

MT-NLG 530B (Smith et al., 2022) 530B 270 Billion



arxiv:2112.11446

Scaling LSLMs: Gopher

Goal: test the limits of scaling laws.

e Family of LMs ranging from 44M to 280B
parameters

e Surfaces ‘skills’ where scale helps...

o Reading comprehension, fact-checking, and the
identification of toxic language, etc.

e ...and skills where scale does not seem to
help.

o Logical reasoning, common-sense tasks

Pile-CC PubMed Abstracts Stack Exchange GitHub
0.90 . ° 0.90 ° ° °

AU A A
TN TN TN N

0.70
0.70

OpenWebText2

Bits per Byte

108 10° 1010 1011 108 10° 1010 1011 108 10° 1010 1011 108 10° 1010 101! 108 10° 1010 1011
Parameters

Abstract Algebra
Anatomy

Astronomy

Business Ethics

Clinical Knowledge
College Biology

College Chemistry
College Computer Science
College Mathematics
College Medicine

College Physics

Computer Security
Conceptual Physics
Econometrics

Electrical Engineering
Elementary Mathematics
Formal Logic

Global Facts

High School Biology

High School Chemistry
High School Computer Science
High School European History
High School Geography
High School Government And Politics
High School Macroeconomics
High School Mathematics
High School Microeconomics
High School Physics

High School Psychology
High School Statistics
High School US History
High School World History
Human Aging

Human Sexuality
International Law
Jurisprudence

Logical Fallacies

Machine Learning
Management

Marketing

Medical Genetics
Miscellaneous

Moral Disputes

Moral Scenarios

Nutrition

Philosophy

Prehistory

Professional Accounting
Professional Law
Professional Medicine
Professional Psychology
Public Relations

Security Studies
Sociology

US Foreign Policy

Virology

World Religions

Overall

40

Accuracy (%)

60

Models

e 417M
e 1.4B
e 7.1B
e 280B

80

100


https://arxiv.org/pdf/2112.11446.pdf

arXiv:2203.15556

Chinchilla: | e N
: : mproved scaling laws as a function of training
Traln Smarter, nOt Blgger set size — data matters more than previously

expected!

17 Megatron-Turing NLG (530B)

w

GPT-3 (1703)*

Make optimal use of FLOPs by training
smaller models on more data.

Gopher (280B) 1e25 FLOPs

100B 1T
Chinchilla (70B) le24 FLOPs
—— Approach 1
0 le23 FLOPs 100B —— Approach 2
9 ” —— Approach 3
v = --=-. Kaplan et al (2020)
£ 108 1e22 FLOPs o 108
E g Y¢ Chinchilla (70B)
© Y% Gopher (280B)
o 1.0B
1le21 FLOPs % GPT-3 (175B)
Y Megatron-Turing NLG (5
1B 1e20 FLOPs 100M
10“{'017, 1019 1021 1023 1025
—— Our estimated compute-optimal scaling FLOPs
100M
10B 100B 1T 10T

Tokens


https://arxiv.org/abs/2203.15556

90-

80-

Accuracy (%)

Ul
o

IS
o

~
o

@)
o

B Chinchilla (70B)
i Gopher (280B)

Chinchilla: Train Smarter, not Bigger

B GPT-3 (175B)
mm Megatron-Turing NLG (530B)

arXiv:2203.15556

“larger, high quality datasets

will play a key role in any

further scaling of language

models”
Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29, 968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion
10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion



https://arxiv.org/abs/2203.15556

Compression, Sparsity

Hard for pre-training

« SMoE models (Switch, ...)
* Hard to prune or distill Gopher

 Hardware co-design to take full advantage



Dense2Sparse

e |earning f != representing f

e In training vs post-training

o (Can be coupled with fine-tuning

e (Geared towards inference

e Requires memory budget and ability to train initial dense model — wasteful
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How to do this in practice?

Pruning should remove unnecessary redundancy and unused capacity




How to Prune

Pruning methods differ across many dimensions:

e weight magnitude, activations, gradients, Hessian, interpretabillity, credit assignment, random, etc.

T
| o =R
data-free $ data-driven training-aware
(no model evaluation) (inference-only) . (full training) .
—

e
3210~ siaNaxN  JREPR P g e Wv 4 WA\
neuron-/weight-  weight remove trivial sensitivity correlation / loss function  reguylarization statistical /

similarity magnitude .4 elements §3.3 similarity merge approximation L, 3.6 Variational
§ . § 3.3.1 ].st Order § 3.4 L . § 3 7
2 :

2"d order? 35

“energy” input sensitivity Fourier sensitivity Hebbian similarity
(outputs always (do outputs change  (which weightsdo  (strengthen weights (outputs are

nearly zero?)  across examples?) not influence outputs?) between correlated 3|l similar?)
neurons)

Layer-wise vs global

Sparsity level

Unstructured vs structured, etc.

One-shot vs iterative pruning

Followed by: finetuning, reinitialization, rewinding
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Sparse2Spar -

Start with a sparse network to reduce memory and training FLOPs

Example: RiGL

(4) Grow

(2) Update
Schedule

(1) Sparsity Initialization Is Update
Distribution lteration?

Sparse
Training
Step

Issue: every N iterations, need to compute Top-K over gradient. Efficient implementation?



Sparse2Spar - -
O
Start with a sparse network to reduce memory and training FLOPs

Example: Top-KAST
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Start at desired final sparsity with a top-k over weight norms and keep around an extra set of connections
that are only updated in the backward pass. If these grow large enough, they turn “on” in the forward.



Sparsifying LSLMs

“While we show modest success in the compression of these models, resulting in small shifts in the scaling curves, on the whole, none of the
methods we explore are remarkably successful. The general finding is that whilst compressing models for a particular application has seen
success, it is difficult to compress them for the objective of language modelling over a diverse corpus.”

90% sparsity requires ~2.5x fewer params
for a given eval loss. However:

- unstructured sparsity is hard to take
advantage of on most accelerators — 2.5x
reduction in #params is not sufficient to
offset the decrease in efficiency of doing
sparse computations.

- required instantiating 10x larger dense
model

- sparsitying without appreciable accuracy
drop only leads to 20-30% sparsity

C4 eval loss
W
U1

w
o

—8— Dense
50%

—0— /5%

—0— 90%

2.5

105 10 107 108

Non-Zero Param. not in Embeddings

See “Routing Nets” for most successful example of sparsity in scaling LSLMs!



Interpretability

How do these models really work?

 Mechanistic interpretabillity:
* |nduction heads
e Superposition (see other Anthropic results)

 Decoding of vision+language



Towards understanding LSLMs

Mechanistic Interpretability: Approach to interpretability focused on understanding the
underlying physical mechanisms that correspond to higher level observed behavior in the

system
— fiInd mechanisms that generate the patterns we see

-  Examine the phenomena in a network like in a physical system
(empirical approach)

- Concepts of cause and effect, interventions
- Abillity to probe the system, interact with it, test hypotheses
- Assumes modularity of behavior

- Analogous to mechanics in physics (statics + dynamics)

- Start from "what?” and get to "how?”
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Visualization of Induction Heads in our 2-Layer Attention-Only
Transformers

Mr and Mrs Dursley, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much. They were the last people you'd
expect to be involved in anything strange or mysterious, because they just
didn't hold with such nonsense. Mr Dursley was the director of a firm called
Grunnings, which made drills. He was a big, beefy man with hardly any neck,
although he did have a very large moustache. Mrs Diggley was thin and blonde and
had nearly twice the usual amount of neck, which came in very useful as she
spent so much of her time craning over garden fences, spying on the neighbours.
The Dursleys had a small son called Dudley and in their opinion there was no
finer boy anywhere. The Dursleys had everything they wanted, but they also had a
secret, and their greatest fear was that somebody would discover it. They didn't
think they could bear it if anyone found out about the Potters. Mrs Potter was
Mrs Diigley's sister, but they hadn't met for several years; in fact, Mrs

Eursley pretended she didn't have a sister, because her sister and her
good-for-nothing husband were as unDursleyish as it was possible to be. The
Dursleys shuddered to think what the neighbours would say if the Potters arrived
in the street. The Dursleys knew that the Potters had a small son, too, but they
had never even seen him. This boy was another good reason for keeping the
Potters away; they didn't want Dudley mixing with a child like that.

Mr and Mrs Dursley, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much. They were the last people you'd
expect to be involved in anything strange or mysterious, because they just
didn't hold with such nonsense. Mr Dursley was the director of a firm called
Grunnings, which made drills.




Copying arbitrary sequences

2. Look forward one token

77N

A series tokens . A series

S

[prediction]

-

‘\/_,

3. Copy whatever’s there

44



Let's think about this mechanistically

Can’t expect a copying head to do it - the
trigram isn’t that likely!

¢

A series of tokens . A series

of

[prediction]
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Let's think about this mechanistically

Examples from Elhage et al.:

(but there are some “copying heads” that do

this for more likely sequences)

series

of

tokens

[ b] [a]
Source Token Destination Token
" perfect” “are”, “looks”,
“is", " provides”
“large” “contains”, " using’,
“ specify”, “ contain”
“two" “One”, \n ", “has”,
“\r\n ”, “One”
“lambda” “S\\, MW, R
“(\W,  “S{\W
"nbspﬂ M&N' o \"&M' N}&"'
“>&", “=&"
“Great”

“The”, “The", "the”,
“contains”, " /"

series

[borb’]

Out Token

“ perfect”,
[

“large”, “ small”,
very, -

twao", " three”, " four”,
“five”, “one'

“lambda”, "sorted’
" lambda’, "operator

“nbsp”, "01°, "gt", "00012",

nbs’, quot

“Great”, "qgreat”,

Example Skip Tri-grams

“ perfect... are perfect”,
" perfect... looks super”

“large... using large”,
“large... contains small”

“two... One two’,
“two... has three"

“lambda... S\\lambda",
“lambda... +\\lambda"

‘nbsp... &nbsp”,
‘nbsp... >&nbsp”

“Great... The Great”,
"Great... the great”

of [prediction]
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Let's think about this mechanistically

x Can’t copy directly - we’d just predict “of”

A series of tokens . A series of [prediction]
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Let's think about this mechanistically

3. Copying Woy increases

logit of matched (shifted)
token

A series of tokens . A series

2. ‘Matching’ Wk
now matches at
shifted position

of

[prediction]
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Induction In action

key

out about the Potters. Mrs Potter was neighbours would say if the Po arrived in

attention pattern moves information

logit effect

out about the Potjgl§. Mrs Potter was neighbours would say if the Potters arrived in

query
ters arrived in

out about the ters. Mrs Potter was neighbours would say if the

key

Mr and Mrs Dursley, of number with such nonsense. Mr| Dglley was the

logit effect

attention pattern moves information

Mr and Mrs DliSlley, of number with such nonsense. Mr| Diursley was the

query

Mr and MrsiBurs ley, of number with such nonsense. ursley was the

Image from Elhage et al., 2021
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Evaluation

Evaluation

Induction heads phase change

Replicating Olsson et al. 2022 and Elhange et al. 2021

The occurrence of the phase-transition bump, observed in the learning curve, corresponds to a clear
phase transition and behavioral change in the model: the model picks up the ability to more easily
generate correct tokens later on in the context
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steps Step
A "poswamah" is a type of Elvish sword. An example of a sentence that uses the A "saosihd" is a colorful flower that grows on Alpine glaciers. An example of a
word poswamah is: "The elf took out his poswamah and started swinging it sentence that uses the word saosihd is: "A saosihd bloomed, and then it was

around." gone again."
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Change in
In-context learning score

mtv3

+10% - Ablated head

N— — 0

— 1

+0% — 2
— 3

4

-10% - s
— B

5

-20% - 8
—_—
10
-30% - 11
|l 12
13
‘400/0 = B 14
20 40 60 80 100 1

Checkpoint number

Negative change means that the ability of the model to do in-context learning decreases as that
head is ablated



. Pretrained and frozen

Trained from scratch
during Flamingo training

Perceiver Perceiver
Resampler Resampler

Visual data

Interpreting VLMs?

Output: text

a very serious cat.

n-th GATED XATTN-DENSE

1st GATED XATTN-DENSE

Processed text I

<image> This is a very cute dog. <image> This is

data interleaved

This is a very cute dog.

5

Input: text and visual ‘

This 1is

processing
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Head 1-1

Attends broadly
found, ,found
in, N
taiwan, 7 taiwan
[SEP]« -/ I[SEP]
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wingspan« / - »wingspan
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Head 3-1
Attends to next token

found

found
—
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Head 8-7
Attends to [SEP]

found

found
in in
taiwan taiwan
[SEP] [SEP]
the the
wingspan wingspan
is < 1S
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Things to discuss If | have time:

- What are the missing ingredients”? Can scale get us all the way? Or
are we missing some building blocks for reasoning? (Memory, RL,
Inductive biases, invariances, guarantees, explicit knowledge graphs,

)

- External memory (memorizing transformers, etc.)



