
Towards the next
generation of transient

gravitational wave searches

Credits: LIGO

Gravitational
wave detection
and its sources

Credits: Shanika Galaudage

Towards future gravitational wave observatories

Source: gwplotter.com

The next generation of challenges: Einstein Telescope
Credits: Andreas Freise

We will see more signals for longer times

Matched filtering (MF) for CBC searches

∗ →Unknown signal Triggers
Template

Bank
(simulated GW)

Several pipelines for short modelled searches: GstLAL, PyCBC, SPIIR, …

MF := matching models (templates) to unknown signals

Seeing more signals for longer times, implies
longer templates and larger banks

Overlapping signals!

Old and new challenges: transient noise burst (glitches)

S. Bahaadini. Inf. Sci. 2018
GW170817 masked by a glitchExample of a blip glitch (left)

and a intermediate-mass BBH (right)

o Caused by instruments or environment (known or unknown)

o Diminish scientific data available

o Hinder transient GW searches (mask and/or mimic)

o Novel glitches in future runs

Towards the next generation of transient gravitational wave searches

We focus in two problems:

1. Understand populations of glitches à better inclusion and modeling

2. Beyond current searches: extract more information

o Blips from L1 and H1 (O2) are abundant and simple

IMBH signals are similar to other glitches

Example of a blip glitch (left) and a IMBH (right)

Can Machine Learning help us with the next challenges?

1. Understanding populations of glitches

What is the aim of this work?
Simulate transient noise burst (glitches) from LIGO detectors with Machine Learning

Why more? We have so many!
Create an open-source interface for production:

- mock data challenges: Einstein Telescope
- improve classifiers: controled dataset à robust algorithms
and more!

How are we going to do it?
Generate glitches in time domain with Generative Adversarial Networks

Data and pre-processing

Gravity Spy
(selection: ML

classifier)

BayesWaves
(reconstruction

: wavelet
modeling)

rROF
(denoising:
variational
method)

GAN input
Gravity Spy

(re-evaluation)

Arxiv: 1410.3835 Arxiv: 1806.07329Arxiv: 1611.04596

Generative Adversarial Networks

o Used to learn the underlying distribution of the data

o Convolutional neural networks (CNN)

o Inspired by Game Theory: game with 2 networks

o Use Wasserstein loss: discriminator till optimality

o Very unstable process

o Penalize the network to stabilize it

Network employed: CT-GAN (Wei, ICLR 2018)
D
iscrim

inator
loss

CT-GAN: GP + CT with Dropout

Some intuition from the experiments:

o Gradient Penalty (GP): balances the loss
of the discriminator and generator

o Consistency term (CT): regularizes the
generator.

o Dropout: regularizes the discriminator.

Both terms tend to zero when the network is
stable.

Building a fake population of blips

Metrics and hypothesis to avoid misgenerations

Assumption: CT-GAN learnt the underlying population except certain anomalies

o If bj is reliable blip, it will represent both real and fake populations à𝑚 𝐵!"#$, 𝑏% ≈ 𝑚 𝐵&#'" , 𝑏% ≈ 1.0
o If bj is anomalous blip, it will not represent both real and fake populations à𝑚 𝐵!"#$, 𝑏% ≈
𝑚 𝐵&#'" , 𝑏% ≈ 0

Hypothesis: 𝑚 𝐵!"#$, 𝑏% and 𝑚 𝐵&#'" , 𝑏% are linearly correlated.

Define metric 𝑚
𝑚 𝑏(, 𝑏% := similarity between two signals 𝑏(and 𝑏%.

𝑚 𝐵, 𝑏% :=𝜇(𝑀%) ± 𝜀(𝑀%) where 𝑀% := {𝑚 𝑏(, 𝑏% ∀ 𝑏(∈ 𝐵}
What metrics?

Similarity measures à Wasserstein distance (W1), Match function (𝑀&), Normalized cross-covariance (𝑘)

Results

A practical example with gengli

GitHub repository: https://git.ligo.org/melissa.lopez/gengli

Full example: plot_glitch.py

Whitened

Einstein
Telescope
design

Mantainer: Stefano Schmidt

https://git.ligo.org/melissa.lopez/gengli
https://git.ligo.org/melissa.lopez/gengli/-/blob/main/examples/plot_glitch.py

Selecting reliable generations

Build initial data set (100 samples) to compute the confidence of the generated glitch

dw : Wasserstein distance
dmm : Mis-match (1- match)
dcc : Cross covariance (1 – k)

Percentile 𝑝 ∈ [0.0, 1.0]
If the generated glitch is in the percentile
region it is accepted. Otherwise, it is
dropped.

1 8Credits: James Webb

Questions so far?

2. Beyond current searches

What is the aim of this work?
Improve the robustness of GW searches by analysing trigger pipelines with ML

Why?
Intermediate-mass binary black holes are hard to detect
CBC searches generate triggers à “free” information that we can use

Similar ideas with cWB: Gayathri et al. (2020), Lopez et al. (2021)

How are we going to do it?
Distinguish IMBH signals from glitches with GstLAL triggers from a truncated search

Matched filtering (MF) for CBC searches

∗ →Unknown signal Triggers
Template

Bank
(simulated GW)

Several pipelines for short modelled searches: GstLAL, PyCBC, SPIIR, …

MF := matching models (templates) to unknown signals

Idea: unknown signals generate multiple triggers.
Can we detect patterns?

A simulated GW through a CBC pipeline
∆𝑡: time where trigger happened – time where GW signal is present in the noise

Trigger à template in template bank

A blip through a CBC pipeline
∆𝑡: time where trigger happened – time where glitch happened

𝑆𝑁
𝑅

Trigger à template in template bank

What does the pattern look like of SNR against time?
Taking time interval: -1s < event time < 1s

Not all glitches produce many injections/triggers

Simplest problem: binary classification with Gaussian Processes

O3a

O3b

Task: binary classification problem à GW signal (IMBH) vs glitch class

To simplify the problem, we discard time component.

For a single event we have multiple triggers:
(𝑚), 𝑚*, 𝑠)+ , 𝑠*+ , 𝜒*, 𝑆𝑁𝑅)(where i ∈ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠à µ 𝑚), 𝑚*, 𝑠)+ , 𝑠*+ , 𝜒*, 𝑆𝑁𝑅

where 𝜒* à signal consistency check of time-frequency evolution of the signal
𝑆𝑁𝑅à match between signal and template

To simplify the problem, we balance the data set with undersampling.

Number of samples glitch class = number of samples IMBH

Simplest problem: binary classification with Gaussian Processes

Proof-of-concept:

o Feature vector: [µ(𝑆𝑁𝑅), µ(𝜒*), µ(𝑚)), µ(𝑚*), 𝜇(𝑠)+), µ(𝑠*+)]
o Task: binary classification problem with undersampling à IMBH vs glitch class
o Algorithm: Gaussian Process classifier with default values
o Package: Scikit-learn
o Output: probability of being a glitch

O3a

O3b

Preliminary results

Conclusions & future work
o We can generate blip glitches.

o Generated blips represent the real blip population.

o Construct a full pipeline for glitch generation.

o Generalize to other types of glitches.

o Application of artificial data set.

https://git.ligo.org/melissa.lopez/gengli

o Proof-of-concept binary classification

o At least a testing accuracy > 0.8

o Get more data!

o Include time component: ordering might be relevant

Challenge 1

Challenge 2

https://git.ligo.org/melissa.lopez/gengli

Thank you for listening!
Questions?

2 8

