

LIGU

Towards the next generation of transient gravitational wave searches

Melissa Lopez

g2Net September 2022

Gravitational wave detection and its sources

Credits: Shanika Galaudage

Masses in the Stellar Graveyard

Towards future gravitational wave observatories

4

The next generation of challenges: Einstein Telescope

Credits: Andreas Freise

We will see more signals for longer times

Matched filtering (MF) for CBC searches

Several pipelines for short modelled searches: GstLAL, PyCBC, SPIIR, ...

MF := matching models (templates) to unknown signals

Overlapping signals!

Old and new challenges: transient noise burst (glitches)

- Caused by instruments or environment (known or unknown)
- o Diminish scientific data available
- Hinder transient GW searches (mask and/or mimic)
- Novel glitches in future runs

Example of a blip glitch (left) and a intermediate-mass BBH (right) GW170817 masked by a glitch

Normalized amplitude

Towards the next generation of transient gravitational wave searches

Can Machine Learning help us with the next challenges?

We focus in two problems:

1. Understand populations of glitches \rightarrow better inclusion and modeling

2. Beyond current searches: extract more information

Blips from L1 and H1 (O2) are abundant and simple

IMBH signals are similar to other glitches

1. Understanding populations of glitches

What is the aim of this work?

Simulate transient noise burst (glitches) from LIGO detectors with Machine Learning

Why more? We have so many!

Create an open-source interface for production:

- mock data challenges: Einstein Telescope
- improve classifiers: controled dataset → robust algorithms and more!

How are we going to do it?

Generate glitches in time domain with Generative Adversarial Networks

Data and pre-processing

Generative Adversarial Networks

Network employed: CT-GAN (Wei, ICLR 2018)

CT-GAN: GP + CT with Dropout

Some intuition from the experiments:

- Gradient Penalty (GP): balances the loss of the discriminator and generator
- Consistency term (CT): regularizes the generator.
- Dropout: regularizes the discriminator.

Both terms tend to zero when the network is stable.

Building a fake population of blips

Metrics and hypothesis to avoid misgenerations

Define metric m

 $m(b_i, b_j) :=$ similarity between two signals b_i and b_j . $m(B, b_j) := \mu(M_j) \pm \varepsilon(M_j)$ where $M_j := \{m(b_i, b_j) \forall b_i \in B\}$ What metrics?

Similarity measures \rightarrow Wasserstein distance (W₁), Match function (M_f), Normalized cross-covariance (k)

Assumption: CT-GAN learnt the underlying population except certain anomalies

If b_j is reliable blip, it will represent both real and fake populations → m(B_{real}, b_j) ≈ m(B_{fake}, b_j) ≈ 1.0
If b_j is anomalous blip, it will not represent both real and fake populations → m(B_{real}, b_j) ≈ m(B_{fake}, b_j) ≈ 0

Hypothesis: $m(B_{real}, b_j)$ and $m(B_{fake}, b_j)$ are linearly correlated.

Results

A practical example with gengli 0.2 0.0 Amplitude -0.2 Mantainer: Stefano Schmidt -0.4 -0.6import gengli -0.8 = gengli.glitch_generator('L1') q -1.0250 0 g_whithened = g.get_raw_glitch() 1e-23 g_coloured_ET = g.get_glitch(4, 2 srate = 16384, psd = 'EinsteinTelescopeP1600143', 0 SNR = 10Amplitude -2 -4 Full example: plot_glitch.py -6 -8

GitHub repository: https://git.ligo.org/melissa.lopez/gengli ¹⁶

Selecting reliable generations

Build initial data set (100 samples) to compute the confidence of the generated glitch

d_w : Wasserstein distance d_{mm} : Mis-match (1- match) d_{cc} : Cross covariance (1 - k)

Percentile $p \in [0.0, 1.0]$ If the generated glitch is in the percentile region it is accepted. Otherwise, it is dropped.

Questions so far?

Credits: James Webb

2. Beyond current searches

What is the aim of this work?

Improve the robustness of GW searches by analysing trigger pipelines with ML

Why?

Intermediate-mass binary black holes are hard to detect CBC searches generate triggers → "free" information that we can use Similar ideas with cWB: Gayathri et al. (2020), Lopez et al. (2021)

How are we going to do it?

Distinguish IMBH signals from glitches with GstLAL triggers from a *truncated* search

Matched filtering (MF) for CBC searches

Several pipelines for short modelled searches: **GstLAL**, PyCBC, SPIIR, ...

MF := matching models (templates) to unknown signals

A simulated GW through a CBC pipeline

 Δt : time where trigger happened - time where GW signal is present in the noise

21

A blip through a CBC pipeline

 Δt : time where trigger happened – time where glitch happened

Trigger \rightarrow template in template bank

What does the pattern look like of SNR against time?

Taking time interval: -1s < event time < 1s

Simplest problem: binary classification with Gaussian Processes

Task: binary classification problem \rightarrow GW signal (IMBH) vs glitch class

To simplify the problem, we <u>discard time</u> component.

For a single event we have multiple triggers: $(m_1, m_2, s_{1z}, s_{2z}, \chi^2, SNR)_i$ where $i \in triggers \rightarrow \mu(m_1, m_2, s_{1z}, s_{2z}, \chi^2, SNR)$

where $\chi^2 \rightarrow$ signal consistency check of time-frequency evolution of the signal SNR \rightarrow match between signal and template

To simplify the problem, we <u>balance the data set</u> with undersampling.

Number of samples glitch class = number of samples IMBH

Simplest problem: binary classification with Gaussian Processes

Proof-of-concept:

- Feature vector: $[\mu(SNR), \mu(\chi^2), \mu(m_1), \mu(m_2), \mu(s_{1z}), \mu(s_{2z})]$
- Task: binary classification problem with undersampling \rightarrow IMBH vs glitch class $\frac{1}{0}$ Package: Scikit-learn
- Algorithm: Gaussian Process classifier with default values
- Package: Scikit-learn
- Output: probability of being a glitch

Proof-of-concept:
 O 3 a
 Feature Vector: [μ(στατ), μ(x]), μ(m1), μ(m2), μ(s1z), μ(s2z)]
 Task: binary classification problem with undersampling → IMBH vs glitch class
 Algorithm: Gaussian Process classifier with default values
 Package: Scikit-learn
 Output: probability of being a glitch

Preliminary results

Conclusions & future work

Challenge 1		o We can generate blip glitches.
		o Generated blips represent the real blip population.
		o Construct a full pipeline for glitch generation.
		Generalize to other types of glitches.
		• Application of artificial data set.
		<u>https://git.ligo.org/melissa.lopez/gengli</u>
	\square	
Challenge 2 -	0 0 0	Proof-of-concept binary classification
		At least a testing accuracy > 0.8
		Get more data!
	(Include time component: ordering might be relevant

Nik hef

Thank you for listening! Questions?