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Two weeks ago at the LIGO-Virgo-KAGRA meeting...

Photo credits: Cardiff University.



  

Two weeks ago at the LIGO-Virgo-KAGRA meeting...

 75 posters → 17 on machine learning methods (~ 23%) 

Photo credits: Cardiff University.



  
321 documents with machine learning tag after 5 years!



  



  

Nowadays, machine learning is used in 
all aspects of the LIGO-Virgo-KAGRA 

analysis pipelines
(both for classification and regression)



  

An (incomplete) overview of machine learning
in gravitational-wave science
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Algorithms for gravitational-wave 
data quality improvement
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The Nirvana of machine learning 
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Algorithms for gravitational-wave 
data quality improvement
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Different machine learning algorithms developed 
for gravitational-wave science are at different 
stages along the path to Nirvana  

The Nirvana of machine learning 



  

Algorithms for gravitational-wave 
data quality improvement
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Spoiler alert: This is where the path to Nirvana 
(and people’s best intentions) usually fail!

The Nirvana of machine learning 



  

Algorithms for gravitational-wave 
data quality improvement



  

● Sensors continuously monitor the
    behavior of the detectors and their
    environment.

● Sensor data are used to characterize
   noise that may negatively impact
   searches and signal estimation.

● Information is in the form of time
   series. 

● Invalid data due to detector malfunctions,
  calibration errors, data acquisition are be
  removed from analyses.

● Flags are created according to different
   levels of data quality.

Algorithms for gravitational-wave data quality improvement
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Over 200,000 auxiliary channels per detector!

● Different data rates from few Hz to 65536 Hz.
   (Strain is at 16384 Hz).

● Different units.

● Different acquisition systems.

● Safe and unsafe channels.

A full, manual analysis of auxiliary channel data is generally impracticable because of the huge number of 
instrumental and environmental monitoring sensors. The power of machine learning to handle huge data sets 
has recently been exploited to analyze auxiliary channel data.

Algorithms for gravitational-wave data quality improvement



  

● Fundamental noise sources inherent to the detector’s
   design, e.g.,

- Quantum sensing noise
- Suspension thermal noise
- Mirror coating thermal noise
- Gravity gradient noise

● Additional noise sources related to the detector’s
   control or environment, e.g.,

- Feedback control system noise
- Electronic or mechanical noise
- Seismic noise and gravity gradient noise
- Anthropogenic noise
- Weather

Algorithms for gravitational-wave data quality improvement

To complicate matters…

● Most of these noise sources are non-stationary over a range of time scales.
● They typically couple to the detector strain in a nonlinear way.
● Short-lived excess noise is referred as “transient noise” or more colloquially “glitches”.
● Persistent excess noise confined to certain frequencies is referred as “spectral lines”.
● How can machine learning help?

Elena Cuoco et al. 2021 Mach. Learn.: Sci. Technol. 2 011002



  

Algorithms for gravitational-wave data quality improvement

Noise transient classification on strain

Substitute for your 
favorite pre-processing

Substitute for your favorite 
machine learning method

Substitute for your 
favorite data



  

Algorithms for gravitational-wave data quality improvement

Noise transient classification on strain: deep learning approach

simulated glitches +  Gaussian noise

Use 2D matrices (images) for classification purposes, e.g., 
spectrograms, Q-transforms

CNNs have an unique power to automatically extract the 
most significant features from an image, which can be used 
to distinguish between different images.

Several image-based detection and classification pipelines 
have been built on 2D CNN layers. 
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Noise transient classification on strain: deep learning approach

simulated glitches +  Gaussian noise

Use 2D matrices (images) for classification purposes, e.g., 
spectrograms, Q-transforms

CNNs have an unique power to automatically extract the 
most significant features from an image, which can be used 
to distinguish between different images.

Several image-based detection and classification pipelines 
have been built on 2D CNN layers. 

Can we use this to subtract glitches (in real time)?



  

Algorithms for gravitational-wave data quality improvement

Noise transient classification on auxiliary channels
Logistic regression and 
Omicron event trigger generator



  

Algorithms for gravitational-wave data quality improvement

Noise transient classification on auxiliary channels
Logistic regression and 
Omicron event trigger generator

Can we go beyond glitch identification to glitch subtraction?



  

Algorithms for gravitational-wave data quality improvement

Deepclean
One-dimensional Convolutional Neural Network which 
takes a specified set of witness channels and 
subsequently outputs the predicted noise in strain.



  

Algorithms for gravitational-wave data quality improvement

Data set preparation

Citizen science! A crowdsource classifier 
plus a convolutional neural network model.

Gravity Spy dataset publicly released. It includes 
8583 of images of LIGO glitches and the 
specifications for 22 glitch classes.



  

Algorithms for gravitational-wave data quality improvement

Anomaly detection



  

Algorithms for gravitational-wave data quality improvement

Anomaly detection

Can we make this robust vs. all glitch types?



  

Algorithms for detector control

G. Vajente, Big Data in Multi-Messenger Astrophysics – December 2, 2021



  

Gravitational waveform
modeling



  

● GW detection of binary systems relies on
   matched-filter analysis. Template
   accuracy is crucial!

● Accurate solutions of the Einstein
   equations for binary sources can be
   obtained with Numerical Relativity (NR)
   simulations.

● High computational cost prevent the
   production of NR waveforms catalogs
   spanning the full parameter space.

● LIGO and Virgo rely on approximate
   solutions that are traditionally obtained
   through the effective-one-body or
   phenomenological modeling approaches.

● How can machine learning help?

Gravitational waveform modeling

Credit. Scientific visualization: T. Dietrich (Potsdam University and Max Planck Institute for Gravitational Physics), N. Fischer, S. 
Ossokine, H. Pfeiffer (Max Planck Institute for Gravitational Physics), T. Vu. Numerical-relativity simulation: S.V. Chaurasia 
(Stockholm University), T. Dietrich (Potsdam University and Max Planck Institute for Gravitational Physics)



  

Gravitational waveform modeling

Waveform building
Gaussian process regression to compute the waveform at points of 
the parameter space not covered by numerical relativity. 

GPR has been used to build surrogate models of both non-precessing 
and precessing BBH systems.

See also:
Z. Doctor et al, “Statistical gravitational 
waveform models: What to simulate next?”
Phys. Rev. D 96, 123011 (2017)



  

Gravitational-wave
searches



  

● Four different types of searches: compact
   binary coalescences, bursts, continuous
   waves, stochastic. Each has its own
   challenges.

● CBC: Matched filter. Computationally
   expensive. Relies on accuracy of
   templates.

● Burst: How to detect an unmodeled
   signal in a sea of (unmodeled) noise.
   Relies on coherence.

● Continuous waves: Hard to detect, need 
    to process long stretches of data. Huge 
    computational cost

● Stochastic: Searches based on cross-
   correlation.

● How can machine learning help?

Gravitational-wave searches



  

Gravitational-wave searches

Detection of binary mergers

See also:
D. George and E.A. Huerta 
Phys. Lett. B 778 64–70 (2018)

● Deep convolutional neural network to search for binary
    black hole gravitational-wave signals.
● Input is the whitened time series of measured gravitational-
    wave strain in Gaussian noise.
● Sensitivity comparable to match filtering.



  

Gravitational-wave searches

Detection of binary mergers

See also:
D. George and E.A. Huerta 
Phys. Lett. B 778 64–70 (2018)

Alternative methods?
Rapid parameter estimation?

● Deep convolutional neural network to search for binary
    black hole gravitational-wave signals.
● Input is the whitened time series of measured gravitational-
    wave strain in Gaussian noise.
● Sensitivity comparable to match filtering.



  

Gravitational-wave searches

Detection of binary mergers
● Comparison of 6 algorithms for binary black hole searches.
● Four different data sets of different complexity (from
   Gaussian noise to varying real detector PSD)
● Benchmark data set for algorithm testing.

A few excerpts form the paper conclusions:

● Machine learning search algorithms are competitive in
   sensitivity compared to state-of-the-art searches on
   simulated data and the limited parameter space explored in
   this challenge.
● Most of the tested machine learning algorithms struggle to
   effectively handle real noise, which is contaminated with
   non-Gaussian noise artifacts.
● Traditional search algorithms are capable of detecting
   signals at lower FARs, thus making detections more 
   confident.
● The tested machine learning searches struggle to identify
    long duration signals.



  

Gravitational-wave searches

Rapid localization of sources

● Deep learning-based approach for sky localization
   of binary coalescences
● Train and test a normalizing flow model on
   matched-filtering output from GW searches.
● Fast sky localizations.



  

Gravitational-wave searches

Rapid localization of sources

Application to real detector data? 

● Deep learning-based approach for sky localization
   of binary coalescences
● Train and test a normalizing flow model on
   matched-filtering output from GW searches.
● Fast sky localizations.



  

Gravitational-wave searches

Burst searches
● Decision tree-based machine learning algorithm (eXtreme-
   Gradient Boost) to automate signal vs. noise classification
   in coherent WaveBurst searches for binary black hole
   mergers.
● Post-processing application replacing standard veto
   techniques.



  

Gravitational-wave searches

Supernova searches
● Genetic evolutionary algorithm to perform single-interferometer
   supernova searches.
● Post-processing method on top of cWB.



  

Gravitational-wave searches

Supernova searches

Currently extending to multi-detector and applying to O3 data

● Genetic evolutionary algorithm to perform single-interferometer
   supernova searches.
● Post-processing method on top of cWB.



  

Gravitational-wave searches

Supernova searches
● 1D (time series) and 2D (images) CNN classification.
● Training with simulations of signal and glitches in Gaussian noise.
● Detection with wavelet detection filter.



  

Gravitational-wave searches

Supernova searches

Performance on real detector data? Multi-detector search?

See also:

● 1D (time series) and 2D (images) CNN classification.
● Training with simulations of signal and glitches in Gaussian noise.
● Detection with wavelet detection filter.



  

Astrophysical interpretation of 
gravitational-wave sources



  

● Current parameter estimation techniques
   for compact binary coalesce signals rely
   on Bayesian analysis (posteriors +
   evidence).

● Computationally costly!

● Need to dramatically speed up the
    process!

● How can machine learning help?

Astrophysical interpretation of gravitational-wave signals



  

Rapid inference of source properties
● Classifiers (Kneighbors, genetic, random
   forests) for HasNS and HasRemnant properties
   of sources in low-latency
● Train and test on LIGO-Virgo online MDC
● Integrate in the LVK low-latency infrastructure
   and run in O4

See also:
S. Sharma Chaudhary, MC, D. Chatterjee, 
S. Ghosh, in preparation

Astrophysical interpretation of gravitational-wave signals



  

Parameter estimation
● Deep neural networks to infer the relationship between the initial
   BBHs parameters and the remnant final mass and fina spin of a
   binary black hole merger. 
● Trained with publicly available NR catalogs.

Precessing

Non-precessing

Astrophysical interpretation of gravitational-wave signals



  

Astrophysical interpretation of gravitational-wave signals

Parameter estimation

● Autoregressive normalizing flows for rapid likelihood-free
     inference of binary black hole system parameters.
● Maps a multivariate standard normal distribution into
     the posterior distribution of system parameters.
● Performance comparable to Markov chain Monte Carlo.



  

Astrophysical interpretation of gravitational-wave signals

Parameter estimation

● Pre-trained conditional variational autoencoder 
● Standard advanced detector power spectral density.
● Full-parameter estimation ~ 1 s.



  

Astrophysical interpretation of gravitational-wave signals

Parameter estimation

● Pre-trained conditional variational autoencoder 
● Standard advanced detector power spectral density.
● Full-parameter estimation ~ 1 s.

Extension to full space of binary system parameters? Longer 
duration waveforms? Non-stationarity of detector PSDs? 



  

What do we need to do to reach gravitational-wave 
machine learning Nirvana?

The eightfold path to machine learning enlightenment  



  

What do we need to do to reach gravitational-wave 
machine learning Nirvana?

The eightfold path to machine learning enlightenment  

Show better performance than conventional 
techniques on the full parameter space!

Test on real data!

Implement in 
production mode!

Be careful about 
overfitting!

Make sure your algorithm speaks 
the language of physicists!

Go beyond classification!

Favor interpretability 
over accuracy!

Design algorithms 
for low latency!



  

The author thankfully acknowledges the human and material resources of the LIGO Scientific Collaboration and the Virgo Collaboration that have made 
possible the results presented in this talk, and the National Science Foundation for its continuous support of LIGO science, and basic and applied 

research in the United States. This work has been partially supported by NSF grant PHY-2011334.

Thank you! 
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