

WG3 — Some perspectives after 4 years of g2net

Luigia Petre and Andrea Chincarini

Pisa Meeting 2

WG3

- 25 (**15**) members
 - Dr. Francesca Badaracco
 - Dr. Eng. Mateusz Bawaj
 - Dr. Valerio Boschi
 - Prof. Peter Butka
 - Sotirios Chatzis
 - Dr. Andrea Chincarini
 - Alessio Cirone
 - Dr. Jan Harms
 - Dr. Alberto less
 - Dr. Natalia Korsakova
 - Dr. Luca Longo
 - Dr. Nikhil Mukund
 - Dr. Conor Muldoon
 - Franco Maria Nardini
 - Dr. Eng. Andrea Paoli

- Dr. Luigia Petre
- Luca Rei
- Dr. Maria Tringali
- Dr. Catia Trubiani
- Dr. Gabriele Vajente
- Rob Walet
- Andrei Utina
- Dr. Catalin Leordeanu
- Prof. Marco Cavaglia
- Dr Agata Trovato

Our focus

- GW detectors → uniquely complex instruments
 - specific and new challenges in terms of control and noise issues
 - currently running + space-borne foreseen detectors
- Significant adaptation and ingenuity in ML approaches
 - seldom used as textbook cases
 - often coupled with simulations
 - burden with heavy experimental constraints
- We need diverse expertise and interaction
- Our goal → develop ML algorithms
 - as part of the detectors' feedback-control systems
 - for the feed-forward cancellation of noise

- 1. ML for glitch removal
- 2. Newtonian noise cancellation with ML
- 3. Data pre-processing with reinforcement learning
- 4. Deep learning for noise removal
- 5. Laser cavity control to optimise locking time and stability

28-9-22 Pisa Meeting

- Online workshop
 - 22-23 March 2021
 - https://indico.ego-gw.it/event/172/
- Online Training School
 - August 30 September 2, 2021
 - https://indico.ego-gw.it/event/217/
- WG2-3 hybrid workshop
 - June 8, 2022
 - https://indico.ego-gw.it/event/409/

- Speakers
 - Diego Bersanetti, INFN Genova (IT)
 - Interferometer Cavities: locking strategies and improvement possibilities
 - Francesca Badaracco, GSSI (IT) & UCLouvain (Belgium)
 - Surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo
 - Rob Walet, Nikhef (The Netherlands)
 - The experiment of the table top interferometer
 - Gabriele Vajente, LIGO Laboratory Caltech (US)
 - Non stationary noise removal from LIGO data
 - Fiodor Sorrentino, INFN Genova (IT)
 - Sqeezed light benches and optical alignment issues
 - Marco Cavaglia, Missouri University of Science and Technology (US)
 - Glitch removal in ground-based gravitational-wave interferometric detectors
- 31 registered participants
- All presentations recorded

- 7 speakers
 - 5 from Europe, 1 from UK and 1 from US
 - Dr Francesca Badaracco, UCLouvain, Belgium
 - Topic: Newtonian Noise Cancellation Strategies and Optimisation Problems
 - Dr Luca Naticchioni, INFN, Italy
 - Topic: Einstein Telescope site characterisation measures and their impact on the third generation GW detectors
 - Prof Stefan Hild, Maastricht University, The Netherlands
 - Topic: Einstein Telescope: technical & scientific challenges for the future GW detectors
 - Dr Razvan Pascanu, DeepMind, UK
 - Topic: Deep learning Taxonomy
 - Prof Marco Cavaglia, Missouri Univeristy of Science and Technology, US
 - Topic: Fractal analysis for interferometer control
 - Dr Natalia Korsakova, Artemis, France
 - Topic: LISA talk on disentanglement
 - Dr Fabio Bonsignorio, HeronRobotics
 - Topic: Possible Utilization of Intelligent Robotics Technologies in GW detection and in the Einstein Telescope
- Each lecturer → 2-hour slot for their lecture and interaction with participants
- We recorded each slot

- 39 registered participants
 - 1 Early Career Investigator (ECI) speaker
 - 1 International Partner Country (IPC) speaker
 - 4 /9 women involved in the organisation
 - Francesca, Natalia, Luigia, Agata
 - Isa helped a lot
 - Our estimation
 - About 1/2 of participants
 - ECI
 - About 1/3 of participants
 - women

WG3 contributes to

- Deliverable 7?
 - Report on Design study for application for robots to adaptively monitor seismic noise around GW detectors
- Deliverable 9
 - Report on solution to be adopted to address the impact on Newtonian Noise in GW data records
- Deliverable 10
 - Report on the application of ML methods in the control systems for GW detectors
- Deliverable 11?
 - Report on new ML method application in seismological problems for GW detection and related experiments

28-9-22 Pisa Meeting

- Some statistics since September 2019
- 1. Number of publications \rightarrow 10
- 2. Number of online meetings \rightarrow 14
- 3. Number of STSM grants \rightarrow 3+1
- 4. Presentations \rightarrow 14
- 5. Online workshops \rightarrow 1
- 6. Training schools \rightarrow 1
- 7. Hybrid meetings \rightarrow 1

28-9-22 Pisa Meeting

- Small community of people interested in our topics
 - Andrea Chincarini, Rob Walet, Conor Muldoon, Andrei Utina, Diego Bersanetti, Fiodor Sorrentino, Marco Cavaglia, Gabriele Vajente, Francesca Badaracco, Luca Naticchioni, Mateusz Bawaj, Nikhil Mukund, Natalia Korsakova
- Understanding the big picture and where it is going
 - GW detectors, ML solutions, control systems
 - Control strategies in GW detectors
 - Control Aspects in Future GW Detectors
 - Emerging ML solutions to GW Detectors Control

Zoom in

- Control strategies in GW detectors
 - Lock acquisition and loss (Diego Bersanetti)
 - Squeezed light benches and optical alignment issues (Fiodor Sorrentino)
 - Non stationary noise removal from GW data (Gabriele Vajente)
 - Newtonian Noise Cancellation Strategies and Optimisation Problems (Francesca Badaracco)
 - Glitch removal in ground-based GW detectors (Marco Cavaglia)
- Control Aspects in Future GW Detectors
 - Einstein Telescope (Luca Naticchioni, Stefan Hild)
 - LISA (Natalia Korsakova)
 - Robotics for GW detectors (Fabio Bonsignorio)
- Emerging ML solutions to GW Detectors Control
 - Towards a neural network based sensing & control for GW observatories (Nikhil Mukund)
 - Combinatorial optimization for sensor placement with deep reinforcement learning (Conor Muldoon)
 - Newtonian noise subtraction in 2G and 3G detectors using neural networks (Soumen Koley)

WG3 → Machine Learning for Advanced Control Techniques Luigia Petre Andrea Chincarini

28-9-22