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Introduction/motivation
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We extend previous studies using CNNs and
spectrograms towards very asymmetric mass
configurations motivated by the search for

sub solar mass objects (pBHs) in binary systems

Results are based on O3 LVK data set



Data Preparation

We apply the standard Quality requirements Example of injection with
(following the work for the GWTC — 3 paper) m, = 2.6 Msun, m, = 0.35 Msun,
D, = 3.4 Mpcs

H1

Removing data segments around
identified GWTC-3 events

We consider the LIGO/Virgo sample for which
the three interferometer are online in physics
mode (this reduces the 03 sample to 155 days) 0 ! 2, ¢ !

2D images (spectrograms) of frequency vs time
are constructed in the data (5 s duration each)
— Data whitened and Q-transformed

—> 45 Hz lower limit to control signal duration

e Background only (50%)
* Background + injected signals (50%)

A total of 143.000 images
 80% for training 0 1 2 3 A

o . . Time [s]
10% for valldatlor_m Signal injection using pyCBC with
e 10% for CNN testing

IMRPhenomD waveforms and no spin




CNN architecture

Convolution + Pooling layers

Layer name|Output size Layer structure
convl 112x112 7X7, 64, stride 2
3x3 max pool, stride 2
conv2.x 5656 1x1, 64
3x3,64 | X3
1x1, 256
[ 1x1, 128 |
conv3d_x 28x28 3x3, 128 | x4
1x1, 512
[ 1x1, 256 |
conv4._x 14x14 3x3, 256 | X6
1x1, 1024
1x1, 512
convd._x ™7 3x3, 512 | x3
1x1, 2048
1x1 Global average pool, 1-d fc, sigmoid

Hyper parameters

Learning rate
Batch size
Number of epochs
Optimizer

Loss function

0.01
32
10

Adam

Binary-cross entropy

Flattening

Phys. Rev. D 103, 062004 (2021)

5" Based on ResNet50

Dense layers

The activation function of the last
layer is chosen to be a sigmoid:

fx) =

l1+e>x

We initially trained 7 different CNNs using as input
data from single interferometers, pairs of
interferometers and all interferometers together

— The simultaneous use of multiple interferometers
help in figuring out correlations across IFTs

- We discarded the CNNs using single
Interferometer inputs for the final O3 scan



Training and ROC
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O There is a healthy evolution of training process
We observe a discriminating power in CNNs
10
The detection efficiency is limited to ~ 70%
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7 The CNN operating point (1) is determined
by the ROC information and tolerable fake rate



FARs and combined CNNs

« We compute the False Alarm Rate (FAR)
using the same time slide technique as in
the case of matched filtering approach

* > testing O(10°) images and reaching
FAR values of 1/153 years?

FAR(m)=Nm=>mn,)/T

* We aimed for a CNN operating point (1)
with FAR of 1/year but FAR remains
large for CNNs asm, =2 1

 We further improved the sensitivity by
combining the CNNs outputs in a single
discriminant

— a simple average was implemented after
considering other more sophisticated
combination methods

—> A FAR below 1/year is reached
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Discriminant

CNN Threshold TP rate FP rate FAR(n=1) [yrs™}
H1-1L1 1.0 046 <2.107* ~ 102
L1-V1 1.0 047 <2.107* ~ 103
H1-V1 1.0 044 <2.107* ~10?
H1-L1-V1 10 0.58 <2.107¢ ~ 103
Combined 0998 050 <2.107* ~ 1072
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Improved separation of signal vs background
using the combined discriminant



Signal Injections

Detections/Total
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We eval.uate thfe pe.rfor.mance of the CNNs | CNN prct (80%) pnet (90%) pret(95%)
and their combination in terms of SNR (p) using 11 — L1 24.4 30.5 42.0
the injection of signals L1-V1 23.7 29.0 41.2
H1 - V1 26.8 21.1 25.8

— Best results are obtained by the H1-L1-V1 H1-L1-V1l 173 21.1 25.8
= The performance of the combination is Combined 22.4 28.0 40.1

a compromise between H1-L1-V1 and the rest



03 Sscan most significant event

with FAR of 1.9 years
We performed a full scan over the O3 data using Combined CNN = 0.9635
images of 5s duration with a slicing window of 2.5s i

= This implies the testing of more than 8M images

The combined CNN is used and different

values between 0 and 1 of the discriminant are explored " " v U s x 109

— In each case the (inversed FAR) is computed |
T

No significant deviation from background only prediction

=> No claim for detection of asymmetric events 7 7S z 50 51
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Xiv:210912197  gor CL on merger rates

Using loudest event statistics
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- Not improving existing bounds from &
matched filtering results (but extended in mass) &'

1024 ---- m;=20M, (Nitzetal) — >~

—> Partially attributed to the reduced (1/2) in T | |
107 10°
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Final notes

We present results on the search for asymmetric
binary events using CNNs and O3 data

* No claim for detection is made after full scan
and calculating the FAR for each configuration

e Results translated into 90% CL upper limits on
merging rates versus chirp mass

Not competitive with existing matched filtering
based bounds but extends the mass range

- Due to the required H1-L1-V1 configurations
to control fake rates but reducing % the
observation time.

- Future improvements 2 implement a nested
NN to reduce glitches and fake rates

Results already blessed by LIGO and Virgo and
will be submitted for publication once the LVK
subsolar mass paper is finally submitted

(we are under embargo)

https://dcc.ligo.org/LIGO-P2200184
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We present results on the search for the coalescence of compact binary mergers with very asym-
metric mass configurations using convolutional neural networks and the LIGO/Virgo data for the
03 observation period. Two-dimensional images in time and frequency are used as input. Masses
in the range between 0.01 Mg and 20 M, are considered. We explored neural networks trained
with input information from a single interferometer, pairs of interferometers, or all three interfer-
ometers together, indicating that the use of the maximum information available leads to improved
performance. A scan over the O3 data set using the convolutional neural networks for detection
results into no significant excess from an only-noise hypothesis. The results are translated into 90%
confidence level upper limits on the merger rates as a function of the mass parameters of the binary

system.,

PACS numbers: 95.85.5z, 04.80.Nn, 95.55.Ym, 04.30-w, 04.30.Tv

I. INTRODUCTION

Since the discovery of Gravitational Waves (GW)
in 2015 [1], generated by a compact binary coales-
cence (CBC) of black holes (BH), the LIGO and Virgo
experiments have improved their sensitivity and ob-
served an increasing number of GW signals, includ-
ing also events attributed to the coalescence of neu-
tron stars (NS), as well as the coalescence of BH-
NS binary systems. The latest catalogue of events,
from 01, 02 and O3 observation runs, collects a to-
tal of 90 events, dominated by BH-BH candidates [2-
4]. The data indicate that the masses in the binary
systems range between 1.17 M (GW191219.163120) and
105 Mg (GW190426.190642), with a mass ratio ¢ =
my/ma, where m denotes the heaviest of the two ob-
jects, in the range between 1.1 (GW170817) and 26.5

Since there is no well-established astrophysical explana-
tion for the origin of SSM BHs, their discovery would
point to the presence of new physics. The presence of
SSM BHs are predicted by different models, including
primordial black holes (PBHs) from the the collapse of
overdensities in the early universe [15-18]; gravitational
collapse of dark matter halos [19-22]; the accumulation
of dark matter by neutron stars leading to SSM BHs [23];
or SSM boson stars [24-26]. As illustrated in Figure 1,
this study complements the phase space in mass consid-
ered by previous searches for SSM events using O3 data
and matched-filtering based selections [4, 27, 28]. Previ-
ous results using other observational periods are included
in Refs. [29-32).

II. DATA PREPARATION







Notes on other combinations

TRAINING RESULTS - Combination of outputs
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To enhance the detection of events we have explored the combination of the outputs of the CNNs trained with the information coming from different

ITFs.

Method 1 from Physics of the Dark Universe 35 (202

100932
SNR=A40
Loss = Z USZNR - "fwx = (Dgwg — (Dswz)?)
SNR=5

After running it for our case:
D = p\Dyyavy + BoDiamy + APy + (1= By = Bo = B3)Dyivy
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fMethod 2 from Physics of the Dark Universe 35 (202

SNR=SNRy+1
SNR,: SNR at which to accept 50% of the events

After running it for our case:
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function is not smooth enougy
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