

A surrogate model for IMRIs in presence of a dark matter spike

By: Karydas K. Theophanes as MSc at GRAPPA, UvA

Acknowledgements:

Prof. Gianfranco Bertone Dr. Bradley J. Kavanagh Dr. Philippa Cole

Outline:

- Exotic waveforms & dark matter spikes
- Environment's impact & costly simulators
- Creation of the surrogate model
- Comparison to analytical fits.
- Application in mock parameter estimation for LISA.

Binary Black Hole Mergers in Vacuum Space

Gravitational waves track the companion's path

Binary Black Hole Mergers in environments

Gravitational waves are out of sync with respect to vacuum case

Dephasing: The difference in cycles in dressed vs vacuum

`Spikes' or **`Dresses'**

From `heavy' particle-like dark matter

Astrophysical Formation

From the slow growth of a BH at the center of a DM halo

Primordial Formation

From density fluctuations In the early universe

LISA

Interactions between DM particles and the companion

Particles deflect and cause dynamical friction

Intrinsic Parameters

$$\boldsymbol{\theta} = (binary, spike)$$

Intrinsic Parameters

 $\boldsymbol{\theta} = (binary, spike)$

Putting the model to the test **Recreation capability**

Empirical

Surrogate

 10^{0}

 10^{-2}

 10^{-1}

A. Coogan et al. (Phys. Rev. D 105, 043009 (2022))

Putting the model to the test vol. 2

Mock data analysis for a LISA signal

Nested Sampling

Mock parameter estimation for LISA

> 1 year SNR = 15

Parameter estimation using **pydd** and dynesty A. Coogan et al. (Phys. Rev. D 105, 043009 (2022))

Remarks:

- Surogate modeling indeed a powerful tool in the search of exotic waveforms contaminated by BH environments.
- (For the physicists) Signs that LISA could be used to recover properties of dark matter.

Outlook:

- Increase complexity of our physical model & reiterate.
- Apply in the search and discrimination between other black hole environments (disks, clouds) led by Pippa Cole (later this fall)

Thank you for your attention!

Acknowledgements:

Prof. Gianfranco Bertone Dr. Bradley J. Kavanagh Dr. Philippa Cole

GRavitation AstroParticle Physics Amsterdam

