

Measuring the Dark Matter environments of black hole binaries with gravitational waves

Alessandro Parisi Scuola Normale Superiore di Pisa

with Gianfranco Bertone, Philippa Cole, Adam Coogan, Bradley Kavanagh, Daniele Gaggero, Elena Cuoco, Alberto Iess

European Gravitational Observatory (EGO) 30 September 2022

First LIGO detection during O1: GW150914

(Abbott et al. PRL 116 (2016) 061102)

- separation of 350 km are making 75 orbits per second before merging.
- Black holes collide at (almost) speed of light, like fundamental particles.

• Gravitational waves carry fingerprints of source.

Time (s)

Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, A., ... & Agathos, M. (2020). GWTC-2: Compact Binary Coalescences Observed by LIG and Virgo During the First Half of the Third Observing Run. arXiv preprint arXiv:2010.14527.

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Solving two-body problem in General Relativity (including radiation)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- GR is non-linear theory. Complexity similar to QCD.
- Einstein's field equations can be solved:
 - approximately, but analytically (fast way)
 - exactly, but numerically on supercomputers (slow way)

- Analytical methods: post-Newtonian/post-Minkowskian/post-Test-Body expansions effective-one-body theory
 - effective field-theory, dimensional regularization, etc.
 - diagrammatic approach to organize expansions

 $32\pi G_N J$

in both cases a multipole expansion is appropriate to describe the interaction of the source with the gravitational field:

$$\begin{split} S_m[x,h] &= -\int \mathrm{d}\tau \left[m + \frac{1}{2} \mathcal{S}_{\mu\nu} \Omega^{\mu\nu} + I_{ij} E^{ij} + J_{ij} B^{ij} + c_E E^{ij} E_{ij} \dots \right] \\ S_{EH} &= -\frac{1}{64\pi G_N} \int dt d\mathbf{x} \left[\partial_{\mu} h_{\alpha\beta} \partial^{\mu} h^{\alpha\beta} - \partial_{\mu} h \partial^{\mu} h + 2 \partial_{\mu} h^{\mu\nu} \partial_{\nu} h - 2 \partial_{\mu} h^{\mu\nu} \partial_{\rho} h^{\rho}_{\nu} \right] \\ S_{GF\Gamma} &= \frac{1}{22 - G_{-}} \int dt d\mathbf{x} \left(\partial_{\nu} h_{\mu\nu} - \frac{1}{2} \partial_{\mu} h \right)^2 \end{split}$$

Useful ansatz:

$$g_{\mu\nu} = e^{2\phi/m_{Pl}} \begin{pmatrix} -1 & A_j/m_{Pl} \\ A_i/m_{Pl} & e^{-c_d\phi} (\delta_{ij} + \sigma_{ij}/m_{Pl}) - A_iA_j/m_{Pl}^2 \end{pmatrix}$$

$$S_{pp} = \int dt \, e^{\phi/m_{Pl}} \sqrt{\left(1 - \frac{A_iv_i}{m_{Pl}}\right)^2 + e^{-c_d\phi/m_{Pl}} \left(v^2 + \frac{\sigma_{ij}}{m_{Pl}}v^iv^j\right)}$$

$$S_{EH} = \int d^d x \sqrt{-\gamma} \left\{ \frac{1}{4} \left[\left(\vec{\nabla}\sigma\right)^2 - 2\vec{\nabla}\sigma_{ij}^2 \right] - c_d \left(\vec{\nabla}\phi\right)^2 + \frac{F_{ij}^2}{2} + \left(\vec{\nabla}\cdot\vec{A}\right)^2 + \dot{\sigma}^2 + \dot{\phi}^2 + \dot{A}^2 + \text{interactions} \right\}$$

$$e^{iS_{eff}} = Z[J, \mathbf{x}_A]|_{J=0} = \int \mathcal{D}\Phi e^{iS_{quad}} \times \{1 -\frac{1}{2} \left[\sum_A m_A \int dt_A \Phi(t_A, \mathbf{x}_A(t_A)) \right] \left[\sum_B m_B \int dt_B \Phi(t_B, \mathbf{x}_B(t_B)) \right] + \dots \}$$

Newtonian potential:

$$V_{1PN} = -\frac{G_N m_1 m_2}{2r} \left[1 - \frac{G_N m_1}{2r} + \frac{3}{2} (v_1^2) - \frac{7}{2} v_1 v_2 - \frac{1}{2} v_1 \hat{r} v_2 \hat{r} \right] + 1 \leftrightarrow 2$$

Present status of 2 body problem

PM expansion parameter is $G_N M/r$, vs PN expansion

$$\mathcal{L} = -Mc^{2} + rac{\mu v^{2}}{2} + rac{GM\mu}{r} + rac{1}{c^{2}} [\ldots] + rac{1}{c^{4}} [\ldots]$$

Terms known so far

3PN 2PN Ν 1PN **4PN** 5PN 6PN . . . $0 \mathsf{PM} \ 1 \ v^2 \ v^4 \ v^6 \ v^8 \ v^{10} \ v^{12} \ v^{14}$. . . $1/r v^2/r v^4/r v^6/r v^8/r v^{10}/r v^{12}/r$ 1PM . . . $1/r^2 v^2/r^2 v^4/r^2 v^6/r^2 v^8/r^2 v^{10}/r^2$ 2PM . . . $1/r^3 \quad v^2/r^3 \quad v^4/r^3 \quad v^6/r^3 \quad v^8/r^3$ 3PM . . . $1/r^4 \quad v^2/r^4 \quad v^4/r^4 \quad v^6/r^4$ 4PM . . . $1/r^5$ v^2/r^5 v^4/r^5 5PM . . . $1/r^6 v^2/r^6$ 6PM . . .

3PM recently computed by Z. Bern et al. PRL (2019) 5PN G⁶ by S. Foffa, P.Mastrolia, RS, C. Sturm, W. Torres Bobadilla PRL (2019)

Short History of the PN Approximation

EQUATIONS OF MOTION

- 1PN equations of motion [Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]
- Radiation-reaction controvercy [Ehlers et al 1979; Walker & Will 1982]
- 2.5PN equations of motion and GR prediction for the binary pulsar
 [Damour & Deruelle 1982; Damour 1983]
- The "3mn" Caltech paper [Cutler, Flanagan, Poisson & Thorne 1993]
- 3.5PN equations of motion [Jaranowski & Schäfer 1999; BF 2001; ABF 2002; BI 2003; Itoh & Futamase 2003; Foffa & Sturani 2011]
- Ambiguity parameters resolved [DJS 2001; BDE 2003]
- 4PN [DJS, BBBFM]

RADIATION FIELD

- 1918 Einstein quadrupole formula
- 1940 Landau-Lifchitz formula
- 1960 Peters-Mathews formula
- EW multipole moments [Thorne 1980]
- BD moments and wave generation formalism [BD 1989; B 1995, 1998]
- 1PN orbital phasing [Wagoner & Will 1976; BS 1989]
- 2PN waveform [BDIWW 1995]
- 3.5PN phasing and 3PN waveform [BFIJ 2003; BFIS 2007]
- Ambiguity parameters resolved [BI 2004; BDEI 2004, 2005]

• 4.5PN (?)

Tidal effects in the gravitational wave signal emitted in NS-NS binary coalescence

$$h(f) = \mathcal{A}(f)e^{i\psi(f)} \qquad \qquad \psi(f) = \psi_{PP} + \psi_{\bar{Q}} + \psi_{\bar{\lambda}}$$

point-particle contribution

$$x=(m\pi f)^{5/3}$$
 $\,$ PN expansion parameter

$$\begin{split} \psi_{PP}(f) &= 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ 1 + \left(\frac{3715}{756} + \frac{55}{9}\eta\right) x - (16\pi - 4\beta) x^{3/2} \right. \\ &+ \left(\frac{15293365}{508032} + \frac{27145}{504}\eta + \frac{3085}{72}\eta^2 - 10\sigma\right) x^2 + \mathcal{O}(x^{5/2}) \right\} \end{split}$$

σ contains spin-spin and spin-orbit terms. Note that it appears in the 2-PN term (x²) Quadrupole contribution:

$$\begin{split} \psi_{\bar{Q}} &= \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ -50 \left[\left(\frac{m_1^2}{m^2} \chi_1^2 + \frac{m_2^2}{m^2} \chi_2^2 \right) (Q_S - 1) + \left(\frac{m_1^2}{m^2} \chi_1^2 - \frac{m_2^2}{m^2} \chi_2^2 \right) Q_a \right] \underline{x}^2 \right\} \\ Q_S &= \frac{\bar{Q}_1 + \bar{Q}_2}{2}, \quad Q_a = \frac{\bar{Q}_1 - \bar{Q}_2}{2} \end{split}$$
 both the quadrupole moments a

both the quadrupole moments and the spin terms appear at the 2-PN order and cannot be measured independently : in this sense we say that there is complete degeracy

Dark Matter Spikes

Gondolo, P. & Silk, J. 1999, Phys. Rev. Lett., 83, 1719.

Bertone, G. & Merritt, D. 2005, Phys. Rev. D, 72, 103502.

Ullio, P., Zhao, H., & Kamionkowski, M. 2001, Phys. Rev. D, 64, 043504. Feng, W.-X., Parisi, A., Chen, C.-S., et al. 2021, arXiv:2112.05160 Eroshenko, Y. N. 2016, Astronomy Letters, 42, 347.

Boucenna, S. M., Kühnel, F., Ohlsson, T., et al. 2018, J. Cosmology Astropart. Phys., 2018, 003.

Phase space distribution

Follow semi-analytically the phase space distribution of DM:

$$f = \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{r} \,\mathrm{d}^3 \mathbf{v}} \equiv f(\mathcal{E}$$
$$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$$

Each particle receives a 'kick'

 $\mathcal{E} \to \mathcal{E} + \Delta \mathcal{E}$

through gravitational scattering

Reconstruct density from distribution function:

$$\rho(r) = \int \mathrm{d}^3 \mathbf{v} f(\mathcal{E})$$

Dynamical Friction

$$\frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t} = 4\pi (Gm_2)^2 \rho_{\mathrm{DM}}(r_2)\xi(v)v^{-1}\log\Lambda$$

$$\Lambda = \sqrt{rac{b_{
m max}^2 + b_{90}^2}{b_{
m min}^2 + b_{90}^2}},$$

Chandrasekhar, S. 1943, ApJ, 97, 255. Lee, E. P. 1969, ApJ, 155, 687.

Ruderman, M. A. & Spiegel, E. A. 1971, ApJ, 165, 1.
Rephaeli, Y. & Salpeter, E. E. 1980, ApJ, 240, 20.
Ostriker, E. C. 1999, ApJ, 513, 252.
Syer, D. 1994, MNRAS, 270, 205.
Barausse, E. 2007, MNRAS, 382, 826.

Gravitational Wave

 $\frac{\mathrm{d}E_{\mathrm{orb}}}{\mathrm{d}t} = -\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} - \frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t}.$ $\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} = \frac{32G^4M(m_1m_2)^2}{5(cr_2)^5}. \qquad \qquad \frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t} = 4\pi(Gm_2)^2\rho_{\mathrm{DM}}(r_2)\xi(v)v^{-1}\log\Lambda.$ $\dot{r}_{2} = -\frac{64G^{3}Mm_{1}m_{2}}{5c^{5}(r_{2})^{3}} - \frac{8\pi G^{1/2}m_{2}\rho_{\rm sp}\xi\log\Lambda r_{\rm sp}^{\gamma_{\rm sp}}}{\sqrt{M}m_{1}r_{2}^{\gamma_{\rm sp}-5/2}}$ $h_{+}(t) = \frac{4G_{N}\mu}{c^{4}D_{L}} \frac{1 + \cos^{2}\iota}{2} (\omega r_{2})^{2} \cos[2\Phi_{\rm orb}(t) + 2\phi],$ $h_{\times}(t) = \frac{4G_N\mu}{c^4 D_{\star}} \cos \iota(\omega r_2)^2 \sin[2\Phi_{\rm orb}(t) + 2\phi],$ $E(v) = -\frac{1}{2}\eta Mv^{2} \left(1 + \#(\eta)v^{2} + \#(\eta)v^{4} + \ldots\right)$ $P(v) \equiv -\frac{dE}{dt} = \frac{32}{5Gw}v^{10} \left(1 + \#(\eta)v^{2} + \#(\eta)v^{3} + \ldots\right)$ E(v)(P(v)) known up to 3(3.5)PN

$$\frac{1}{2\pi}\phi(T) = \frac{1}{2\pi}\int^T \omega(t)dt = -\int^{\nu(T)}\frac{\omega(v)dE/dv}{P(v)}dv$$
$$\sim \int \left(1 + \#(\eta)v^2 + \ldots + \#(\eta)v^6 + \ldots\right)\frac{dv}{v^6}$$

Detecting DM with Einstein Telescope

- Presence of DM 'spikes' around BHs can alter inspiral dynamics
- GW waveform gradually goes out of phase with the corresponding vacuum-only waveform
- Possibility to detect and constrain dense DM 'spikes' with just a few cycles of GW 'dephasing' → but these subtle differences

Ideal case for Machine learning!

Funded by the European Union's Horizon 2020 - Grant N° 824064

DM

#EDIT WAVEFORM PARAMETERS BELOW:

Dephasing

$$N_{\text{cycles}}(t_{\text{max}}, t_{\text{min}}) = \int_{t_{\text{min}}}^{t_{\text{max}}} f_{\text{gw}}(t) dt = \int_{f_{\text{min}}}^{f_{\text{max}}} df_{\text{gw}} \frac{f_{\text{gw}}}{\dot{f}_{\text{gw}}}$$

$$\Delta N_{\text{cycles}} = N_{\text{cycles}}^{\text{vac}}(f_{\text{max}}, f_{\text{min}}) - N_{\text{cycles}}^{\text{DM}}(f_{\text{max}}, f_{\text{min}})$$

$$q = 10^{-3}, m_1 = 1M_{\odot}$$

 $\rho_{\rm sp} = 835M_{\odot}/{\rm pc}^3$
 $\gamma_{\rm sp} = 9/4.$

Matched Filtering

Naively, one might think that we can only make confident detections when |h(t)| > |n(t)|However, the **majority of signals are expected to be** $|h(t)| \ll |n(t)|$

Therefore, we need a method to detect signals from noise-dominated data If we know the possible forms of h(t), we can "filter" out things that are non-signal-like

Detector Antenna Sensitivity

Antenna patterns

$$F = \begin{bmatrix} \cos(2\psi) & \sin(2\psi) \\ -\sin(2\psi) & \cos(2\psi) \end{bmatrix} \begin{bmatrix} F_{+}[\theta,\phi] \\ F_{-}[\theta,\phi] \end{bmatrix} = \frac{1}{2}(1+\cos^{2}\theta)\cos \theta$$
$$F_{-}[\theta,\phi] = \cos\theta\sin 2\phi$$

Sampled GW signal

 $h[i] = \begin{bmatrix} \cos(2\psi) & \sin(2\psi) \\ -\sin(2\psi) & \cos(2\psi) \end{bmatrix} \begin{bmatrix} h_{+}[i] \\ h_{x}[i] \end{bmatrix}$

• Sampled detector response $\xi[i] = F_{+} h_{+}[i] + F_{\times} h_{\times}[i] = F^{T} \cdot h[i]$

- Direction to the source θ, ϕ and polarization angle Ψ define relative orientation of the detector and wave frames.
- Rotation of the wave frame R_z(2 Ψ) induces transformations both for F and h, but ξ is INVARIANT

Waveform Dataset

- Develop a catalog of waveforms for different luminosity distances and masses
- Luminosity distance d=10kpc, 20kpc, 30kpc, 40kpc, 50kpc, 60kpc,100kpc

$$m_1 = 1M_{\odot}$$
 $m_2 = 10^{-2} - 10^{-4}M_{\odot}$ $\Delta m_2 = 0.001M_{\odot}$

Antenna Sensitivity 100 different directions

• Mass

We have 11400 GW for the vacuum and 11400 GW with dark matter +802 GW at 100kpc

Total: 22800 waveform +802

Machine Learning for GW Classification

Pipeline Structure

Input GW data

- Basic GW wavedorm
- Add a noise
- Antenna Sensitivity 100 different directions
- Whitened strain

Classification

- Basic GW Image creation from time frequency (spectrograms)
- Tested various networks, including a 4-block layers

High Performance Computing Center

Scuola Normale Superiore

Conclusions

- We can measure the properties of dark matter spike around binaries with Einstein Telescope
- We can distinguish between vacuum and dark matter for distance up to 100kpc

Futuro work:

- Eccentric waveforms
- Post-Newtonian corrections

Thank you for your attention

Self-consistent evolution

Assuming everything evolves slowly compared to the orbital period:

Particles scattering from $\mathcal{E} - \Delta \mathcal{E} \rightarrow \mathcal{E}$

 $P_{\mathcal{E}}(\Delta \mathcal{E})$ - probability for a particle with energy \mathcal{E} to scatter and receive a 'kick' $\Delta \mathcal{E}$

$$p_{\mathcal{E}} = \int P_{\mathcal{E}}(\Delta \mathcal{E}) \,\mathrm{d}\Delta \mathcal{E}$$

- total probability for a particle with energy \mathcal{E} to scatter

Tidal effects in the gravitational wave signal emitted in NS-NS binary coalescence

$$h(f) = \mathcal{A}(f)e^{i\psi(f)}$$
 $\psi(f) = \psi_{PP} + \psi_{\bar{Q}} + \psi_{\bar{\lambda}}$

point-particle contribution

$$x=(m\pi f)^{5/3}$$
 PN expansion parameter

$$\begin{split} \psi_{PP}(f) &= 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ 1 + \left(\frac{3715}{756} + \frac{55}{9}\eta\right) x - (16\pi - 4\beta) x^{3/2} \right. \\ &+ \left(\frac{15293365}{508032} + \frac{27145}{504}\eta + \frac{3085}{72}\eta^2 - 10\sigma\right) x^2 + \mathcal{O}(x^{5/2}) \right\} \end{split}$$

σ contains spin-spin and spin-orbit terms. Note that it appears in the 2-PN term (x²)

Quadrupole contribution:

$$\begin{split} \psi_Q &= \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ -50 \left[\left(\frac{m_1^2}{m^2} \chi_1^2 + \frac{m_2^2}{m^2} \chi_2^2 \right) (Q_S - 1) + \left(\frac{m_1^2}{m^2} \chi_1^2 - \frac{m_2^2}{m^2} \chi_2^2 \right) Q_a \right] \underline{x}^2 \right\} \\ Q_S &= \frac{\bar{Q}_1 + \bar{Q}_2}{2}, \quad Q_a = \frac{\bar{Q}_1 - \bar{Q}_2}{2} \\ \text{Tidal contribution: } \psi_{\bar{\lambda}} &= -\frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_a \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \right\} + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \left\{ 24[(1 + 7\eta - 31\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \left\{ 24[(1 + 7\eta - 3\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \left\{ 44[(1 + 7\eta - 3\eta^2)\lambda_S + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \left\{ 44[(1 + 2\eta - 1)\eta^2 + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \right\} + \frac{1}{2} \left\{ 44[(1 + 2\eta - 1)\eta^2 + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \left\{ 44[(1 + 2\eta - 1)\eta^2 + (1 + 9\eta - 11\eta^2)\lambda_A \delta m] x^5 + \frac{1}{2} \right\} \right\}$$

$$\lambda_S = \frac{\overline{\lambda}_1 + \overline{\lambda}_2}{2}, \quad \lambda_a = \frac{\overline{\lambda}_1 - \overline{\lambda}_2}{2} \qquad \delta m = \frac{m_1 - m_2}{m}$$

degeracy can be removed by expressing the Q's in terms of λ using the universal relations NOTE THAT: λ is independent of the spins

Detecting DM with Einstein Telescope

 10^{-17}

 10^{-18}

 10^{-19}

 10^{-20} 10^{-21} 10^{-22}

 10^{-23}

 10^{-24}

- Frequency band of ET means that most promising target would be solar and sub-solar mass binaries
- Characteristic strain Primordial black holes (PBHs) could form such binaries, and must be surrounded by dense spike of particle DM

Waveform generation & search pipeline will all be public \rightarrow implementation in virtual research environment will allow easy access and re-use

> Funded by the European Union's Horizon 2020 - Grant N° 824064

 $(m_1, m_2) = (10^3, 1.4) \,\mathrm{M_{\odot}}$

 10^{-3}

 $(m_1, m_2) = (1, 10^{-3}) \,\mathrm{M}_{\odot}$

 10^{-1}

f [Hz]

 10^{1}

aLIGO

CE

ET

 10^{3}

LISA

Self force causes deviation from background geodesic

- A particle is moving on a background space-time
- Its own stress-energy tensor modifies the background gravitational field
- Because of the "back-reaction" the motion of the particle deviates from a background geodesic hence the appearance of a gravitational self force (GSF)

The self acceleration of the particle is proportional to its mass

$$\frac{\mathrm{D}\bar{u}^{\mu}}{\mathrm{d}\tau} = f^{\mu} = \mathcal{O}\left(\frac{m_1}{m_2}\right)$$

Assume space-time slightly differs from Minkowski space-time $\eta_{\alpha\beta}$

$$\mathfrak{g}^{lphaeta}=\eta^{lphaeta}+h^{lphaeta}$$
 with $|h|\ll 1$

where $\Box = \eta^{\mu\nu} \partial_{\mu} \partial_{\nu}$ is the flat d'Alembertian operator

Inspiral $h = A\cos(\phi(t))$ $\frac{\dot{A}}{A} \ll \dot{\phi}$ Virial relation:

$$v \equiv (G_N M \pi f_{GW})^{1/3}$$
 $\eta = \frac{m_1 m_2}{(m_1 + m_2)^2}$

$$\frac{E(v)}{P(v)} = -\frac{1}{2}\eta Mv^2 \left(1 + \#(\eta)v^2 + \#(\eta)v^4 + \ldots\right)$$
$$\frac{P(v)}{dt} = -\frac{\frac{dE}{dt}}{\frac{dE}{dt}} = \frac{32}{5G_N}v^{10} \left(1 + \#(\eta)v^2 + \#(\eta)v^3 + \ldots\right)$$

E(v)(P(v)) known up to 3(3.5)PN

$$\frac{1}{2\pi}\phi(T) = \frac{1}{2\pi}\int^{T}\omega(t)dt = -\int^{\nu(T)}\frac{\omega(\nu)dE/d\nu}{P(\nu)}d\nu$$
$$\sim \int \left(1 + \#(\eta)\nu^{2} + \ldots + \#(\eta)\nu^{6} + \ldots\right)\frac{d\nu}{\nu^{6}}$$

Next Steps

PBH binaries typically formed (in the early Universe) with very high eccentricity —> Rapid merger

Dark Dresses around PBH IMRIs are likely to accelerate merger...

Do dressed PBH IMRIs merge slowly enough to be detected at low redshift?

