
Intro HHT Iterative Filtering (IF) IMFogram Conclusions

Nonstationary Signals Analysis
New opportunities from the Mathematics of

Signal Processing

Antonio Cicone

G2net workshop 2022

European Gravitational Observatory
Cascina (PI), September 29, 2022



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

Contents

1 Introduction

2 Hilbert-Huang Transform (HHT)

3 Iterative Filtering (IF)

4 The IMFogram

5 Conclusions



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

Main Goal

Given a signal s(x), x ∈ R, containing several oscillatory
components, we want to study its time-frequency content
We do not want to use any previous knowledge or assumptions

Applications

Finance
Economy
Medicine
Engineering
Physics
. . .

Main Problem

Real life signals are nonstationary and nonlinear: multicomponent
and with features which vary over time
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Ex. – Undamped Duffing Eq. – Time-Frequency Rep.
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Idea for a more accurate Time-Frequency Representation

Apply a “Divide et Impera” approach
First decompose the signal into simple oscillatory components
Then study each simple oscillatory component in time-frequency
separately

What is a simple oscillatory component?

Huang’s Intrinsic Mode Function – IMF

An IMF is a function s.t.
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Idea for a more accurate Time-Frequency Representation

Apply a “Divide et Impera” approach
First decompose the signal into simple oscillatory components
Then study each simple oscillatory component in time-frequency
separately

What is a simple oscillatory component?

Huang’s Intrinsic Mode Function – IMF

An IMF is a function s.t.

1 Number of extrema and zero crossings must either equal or
differ at most by one

2 Mean value of the upper and lower envelope is zero
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How to produce such IMFs?

By Optimization


Sparse time–frequency representation
Empirical wavelet transform
· · ·

Drawback: we need to select a priori a basis

By Iteration


Empirical Mode Decomposition – EMD
Ensemble EMD
Noise Assisted EMD
Iterative Filtering – IF
Fast Iterative Filtering – FIF

Open problems: (stability) and convergence except for IF–based
methods
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Hilbert-Huang Transform (HHT)

Proposed in 1998 in the paper “The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non–stationary time
series analysis” by Huang and his collaborators, with more than
16400 citations based on Scopus. The first author, N.E. Huang,
works have a total of more than 36000 citations on Scopus.

Empirical Mode Decomposition (EMD) method

1 Compute the local average m of a signal s as mean value of
upper and lower envelopes

2 Subtract m from s and repeat the previous step until m
becomes the zero function

3 The first IMF is given by s −m

4 Repeat the previous steps to produce all the IMFs
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Example of decomposition via EMD
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HHT - The Time-Frequency Representation

Idea

Compute each IMF instantaneous frequency via Hilbert Transform

H(f )(x) = 1
πp.v.

∫∞
−∞

f (τ)
x−τ dτ Hilbert Transform of f (x)

z(x) = f (x) + iH(f )(x) = a(x)e iθ(x) Analytic Function

where a(x), θ(x) are amplitude and phase of z(x), respectively

The instantaneous frequency iF of signal f (x)

iF(x) =
dθ(x)

dx
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Stability?

The computation of moving averages through cubic splines that
are used repeatedly in the iterations ⇒ a small local perturbation
can influence the decomposition drastically
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Stability?

The computation of moving averages through cubic splines that
are used repeatedly in the iterations ⇒ a small local perturbation
can influence the decomposition drastically

Solved using Ensemble EMD (EEMD) and Noise Assisted EMD
(NA-EMD)
Each IMF as mean of many different trials (from 200 to 800!)
In each trial we add a random perturbation to the original signal

Convergence?

Convergence of the EMD/EEMD/NA-EMD never established

Higher dimensions in space?

Not trivial the extension to 2D and higher dimensions in space
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Iterative Filtering (IF)

Main Idea by Lin, Wang, and Zhou

Same structure of EMD algorithm with the moving average
operator A based now on convolution

A(s)(x) = (s ∗ w)(x) =

∫ L

−L
s(x + t)w(t)dt

where s is the signal, w(t) the filter/window, and 2L is the
support size of the filter

Nonlinear method

Given s1 and s1, s1 ̸= s2, since 2ℓ(x) depends on the signal itself,
then in general

IMFs(s1 + s2) ̸= IMFs(s1) + IMFs(s2)
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IF Convergence

Theorem – IF Convergence1– C., Liu, Zhou - ’14

Given a window w ∈ L2([−L, L]) and a signal s(x) ∈ L2(R).
Defined H = 1−A, where A is the moving average operator.
If |1− ŵ(ξ)| < 1 or ŵ(ξ) = 0, then
{Hn(s)}n≥1 converges and

lim
n→∞

Hn(s)(x) =

∫ ∞

−∞
ŝ(ξ)χ{ŵ(ξ)=0}e

2πiξxdξ

Explicit formula for the IMF obtained using IF with filter w
We have mild sufficient conditions on the filter w that ensure the
convergence of IF which are easily fulfilled

OBS: Any function given by convolution of filter with itself works

1Applied and Computational Harmonic Analysis - 2016
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IF Examples

Example 1
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IF Examples

Example 2 – Tsunami water level
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IF Examples

Example 3 – Troposphere monthly mean temperature
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Fast Iterative Filtering

Fast Iterative Filtering (FIF) algorithm

Theorem – Fast Iterative Filtering (FIF) convergence2– C. - ’20

Given s ∈ Rn, a filter w and periodical extension at the
boundaries, Then

IMF1 = U(I−D)N0UT s = IDFT
(
(I − diag (DFT(w)))N0DFT(s)

)
where
D is a diagonal matrix of the eigenvalues of W
U contains the eigenvectors of the circulant matrix W
N0 is the number of iterations needed based on a predefined
stopping criterion

Fast calculations

The FIF algorithm is on average 100 times faster than IF which
is already faster than basic EMD

2Numerical Algorithms - 2020
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Fast Iterative Filtering

Fast Iterative Filtering (FIF) Energy Conservation

L1 Fourier Energy of a signal s

Given a signal s, its L1 Fourier Energy is defined as
E1(s) = ||ŝ||1, where ŝ is the FFT of s

L1 Fourier Energy conservation Theorem - C., Li, Zhou 2022

Let s ∈ Rn, assuming FIF decomposes it as s =
m∑
1

IMFk + r ,

where r is a trend. Then this decomposition preserves the L1
Fourier energy of s and produces no unwanted oscillations
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The IMFogram Time–Frequency Representation

Assuming s =
∑k

j=1 IMFj and ℓj filter length associated with IMFj

EIMFj
(t) = 1

2ηℓj

∫ t+ηℓj
t−ηℓj

IMFj(τ)
2dτ , local energy of IMFj at t

Considering only interwave modulation frequencies, we define

The IMFogram

Es(R) =
∑

1≤j≤k

1

#ΠtR

∑
τ∈ΠtR

EIMFj
(τ)1

{
Ωf (τ) ∈ ΠωR

}
R time-frequency domain rectangular partitions
ΠtR are R projection onto the time coordinate (#ΠtR finite)
ΠωR the projection onto the frequency coordinate
ΩIMFj

(t)= 1
4ηℓj

(# IMFj 0-crossings in [ t ± ηℓj ]) Local Frequency
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IMFogram convergence to Spectrogram

IMFogram properties

IMFogram contains less artifacts then alternative TFR
methods

It has a higher resolution in time and frequency

Its computational cost is comparable with Spectrogram

IMFogram convergence to Spectrogram Thm - C., Li, Zhou 2022

Given s ∈ Rp, and K non-overlapping time windows Ii , assuming

s(Ii ) =
∑Ni

j=1 a
(i)
j cos(2πf

(i)
j xk + ϕ

(i)
j ), xk ∈ Ii , if we let the FIF

stopping criterion δ to go to zero, then the Hadamard power two
of the IMFogram matrix A converges to the spectrogram matrix
produced using K non-overlapping windows.



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

IMFogram convergence to Spectrogram

IMFogram properties

IMFogram contains less artifacts then alternative TFR
methods

It has a higher resolution in time and frequency

Its computational cost is comparable with Spectrogram

IMFogram convergence to Spectrogram Thm - C., Li, Zhou 2022

Given s ∈ Rp, and K non-overlapping time windows Ii , assuming

s(Ii ) =
∑Ni

j=1 a
(i)
j cos(2πf

(i)
j xk + ϕ

(i)
j ), xk ∈ Ii , if we let the FIF

stopping criterion δ to go to zero, then the Hadamard power two
of the IMFogram matrix A converges to the spectrogram matrix
produced using K non-overlapping windows.



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

IMFogram convergence to Spectrogram

IMFogram properties

IMFogram contains less artifacts then alternative TFR
methods

It has a higher resolution in time and frequency

Its computational cost is comparable with Spectrogram

IMFogram convergence to Spectrogram Thm - C., Li, Zhou 2022

Given s ∈ Rp, and K non-overlapping time windows Ii , assuming

s(Ii ) =
∑Ni

j=1 a
(i)
j cos(2πf

(i)
j xk + ϕ

(i)
j ), xk ∈ Ii , if we let the FIF

stopping criterion δ to go to zero, then the Hadamard power two
of the IMFogram matrix A converges to the spectrogram matrix
produced using K non-overlapping windows.



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

IMFogram convergence to Spectrogram

IMFogram properties

IMFogram contains less artifacts then alternative TFR
methods

It has a higher resolution in time and frequency

Its computational cost is comparable with Spectrogram

IMFogram convergence to Spectrogram Thm - C., Li, Zhou 2022

Given s ∈ Rp, and K non-overlapping time windows Ii , assuming

s(Ii ) =
∑Ni

j=1 a
(i)
j cos(2πf

(i)
j xk + ϕ

(i)
j ), xk ∈ Ii , if we let the FIF

stopping criterion δ to go to zero, then the Hadamard power two
of the IMFogram matrix A converges to the spectrogram matrix
produced using K non-overlapping windows.



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

Example 1 - Undamped Duffing Equation

1 1.5 2 2.5 3 3.5 4

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5

0

0.5

1 1.5 2 2.5 3 3.5 4
-2

0

2



Intro HHT Iterative Filtering (IF) IMFogram Conclusions

Example 2 - Electron density variability – ESA SWARM
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Example 2 - Electron density variability – ESA SWARM
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To summarize

FIF - Fast, stable and reliable signal decomposition

L1 Fourier Energy of the signal is conserved

IMFogram new time–frequency representation method

Higher resolution in time and frequency

Less artifacts than alternative methods

Computational time comparable with Spectrogram

Convergent, in the limit, to Spectrogram

Window size choice appears to be not strict as in
Spectrogram

Fast codes (Matlab & Python) freely available online
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Thank You for the attention

www.cicone.com
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