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Population inference with GWTC-3 data
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LIGO-Virgo-KAGRA / Aaron Geller / Northwestern

https://media.ligo.northwestern.edu/gallery/mass-plot
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Infer the merger properties:

LIGO-Virgo-KAGRA / Aaron Geller / Northwestern

https://media.ligo.northwestern.edu/gallery/mass-plot
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Population inference with GWTC-3 data
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Infer the merger properties:

LIGO-Virgo-KAGRA / Aaron Geller / Northwestern

Stack events together and account for detection biases to
infer the population properties:

https://media.ligo.northwestern.edu/gallery/mass-plot
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Population models head-to-head
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An example phenomenological model:

● Mass gap between neutron stars and black holes
● Mass gap above the PISN threshold
● IMF is a power law
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Population models head-to-head
An example phenomenological model:

● Mass gap between neutron stars and black holes
● Mass gap above the PISN threshold
● IMF is a power law

Simulation-based model:

4

Simulator
e.g.,

pop. synth.

Interpolation
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How do the heaviest BBHs form?
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LIGO/Caltech/MIT/R. Hurt (IPAC)

LVC 2020

https://www.ligo.org/detections/GW190521.php
https://arxiv.org/abs/2009.01075
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Are GW black holes hierarchical?
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Gerosa+Berti 2017

https://arxiv.org/abs/1703.06223
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Simple model of hierarchical mergers
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Gerosa+Berti 2019

https://arxiv.org/abs/1906.05295
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Simple model of hierarchical mergers
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Gerosa+Berti 2019

Gerosa, MM+ 2021

https://arxiv.org/abs/1906.05295
https://arxiv.org/abs/2011.11948
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Emulating the population
● Estimate each population density with KDE

● Learn the full mapping with a deep neural network (TensorFlow)
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(KDEpy)
(Botev+ 2010)

https://www.tensorflow.org/
https://github.com/tommyod/KDEpy
https://arxiv.org/abs/1011.2602
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Emulating the detection efficiency
● Estimate detection efficiency for each simulation (Finn+Chernoff 1993)

● Learn the full mapping with a deep neural network (TensorFlow)
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● Ultimately 
work with the 
log-likelihood

● Also results 
in better 
learning
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https://arxiv.org/abs/gr-qc/9301003
https://www.tensorflow.org/
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Emulating the branching fractions
● Compute fraction of sources in each merger generation

● Learn the full mapping with a deep neural network (TensorFlow)
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https://www.tensorflow.org/
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The full pipeline
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Hyper-posterior from GWTC-3
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Nested
sampling
Skilling 2004
Ashton+ 2018
Speagle 2019

https://aip.scitation.org/doi/abs/10.1063/1.1835238
https://arxiv.org/abs/1811.02042
https://arxiv.org/abs/1904.02180
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Nested
sampling
Skilling 2004
Ashton+ 2018
Speagle 2019

https://aip.scitation.org/doi/abs/10.1063/1.1835238
https://arxiv.org/abs/1811.02042
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Population posterior 
from GWTC-3
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Population posterior 
from GWTC-3
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from GWTC-3
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Gravitational-wave population models
with deep learning

● Emulation of simulated merger populations with deep learning.

● Some GWTC-3 features explanabile with hierarchical mergers.

● Simple numerical simulations for now, but easily applicable.

● Simulation-based sampling? Neural posterior estimation?

Only if the population distribution is not needed…

● Model labelled subpopulations (e.g., generations) individually.

Un-normalized model / normalizing flow (Wong+ 2020) + classifier?

● Learn the intrinsic population distributions without assumptions.

Non-parametric models (Rinaldi+ 2021), Bayesian normalizing flow?

● Sayan Neogi (student): deep learning for merger remnants

Inverse model with uncertain predictions (Varma+ 2019, Haegel+ 2020)

https://arxiv.org/abs/2002.09491
https://arxiv.org/abs/2109.05960
https://arxiv.org/abs/1905.09300
https://arxiv.org/abs/1911.01496
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Simulation summary
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Perform 1000 
simulations: generate 
hyperparameters with 
Latin Hypercube 
Sampling

500 clusters per 
simulation

5000 seed black 
holes per cluster

(Gerosa+Berti 2019)

https://arxiv.org/abs/1906.05295
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Deep-learned population
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● NVIDIA A100 GPU (Baskerville)
● Trained for 10,000 epochs (4 days)
● 194,481,000 total samples (10D → 1D)
● 90%-10% training-validation split
● Batch size = 0.01% of training data
● Adam optimizer
● Learning rate = 0.0001
● Mean absolute error (MAE) loss function
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Deep-learned selection
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● Trained on laptop
● 2,000 epochs (4 minutes)
● 1000 samples (6D → 1D)
● 90%-10% training-validation split
● Batch size = 1% of training data
● Adam optimizer
● Learning rate = 0.001
● Mean squared error (MSE) loss function
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Deep-learned branching fractions
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Validation with mock catalogs
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