
Deep Residual Networks
for GW Astronomy

Aristotle University of Thessaloniki

Paraskevi Nousi
Alexandra E. Koloniari, Nikolaos Passalis, Panagiotis Iosif,
Nikolaos Stergioulas, Anastasios Tefas



Overview
Motivation and Goal

Participation in the first Machine Learning Gravitational-Wave Search
Mock Data Challenge

Four datasets of increasing difficulty: from Gaussian noise to real noise
from the O3a observing run

Our contribution

Gaussian noise is not realistic

We focus on the real noise scenario

Using deep residual networks, adaptive input normalization to account for
non-stationary inputs, batched whitening process, and input augmentations

Leading algorithm among other ML-based submissions in real noise

2/21



MLGWSC

https://arxiv.org/abs/2209.11146 3/21

https://arxiv.org/abs/2209.11146


MLGWSC-1

github.com/gwastro/ml-mock-data-challenge-1

objective characterization of ML GW detection algorithms

allow for easy comparison between different search algorithms

4 datasets of increasing complexity
common code to generate data:

background (Gaussian or O3a noise)
foreground (same noise + injected waveforms)
parameters of injected signals (IMRPhenomXPHM model: non-aligned,
spinning BBH waveforms)

evaluation set generated with the same code, with random seed withheld
from participants algorithms

4/21

github.com/gwastro/ml-mock-data-challenge-1


Our submission

Four basic components:
1 Large training set
2 Whitening process implemented as neural layer
3 Adaptive input normalization
4 Deep Residual networks

5/21



Training set

Dataset 4 only

We start by generating about 300k noise segments of 1.25s duration each,
over the span of one week

We generate a large number (about 20k) of waveforms with parameters
within the given ranges

Our training set then consists of about 600k samples, half noise only, half
noise + waveform

Noise and waveforms are combined once, before training

A validation set with about 86k samples is generated in a similar way, from
1 day of data

Our test set is generated using the provided code (1 month)

6/21



Training Set

7/21



Whitening

We found whitening to be an important preprocessing step

But PyCBC’s method is CPU-based, and processes each sample on its own
So we implement whitening using PyTorch functions

Welch method, following PyCBC’s methods including inverse spectrum
truncation
Operations performed on GPU directly, no need for CPU utilization or CPU
to GPU data transfer
Some operations can be performed as batched

8/21



Deep Adaptive Input Normalization

Passalis et al. https://arxiv.org/abs/1902.07892

9/21

https://arxiv.org/abs/1902.07892


Deep Residual Networks

Originally proposed for 2D image analysis (recognition, detection, etc.)
https://arxiv.org/abs/1512.03385

The residual connections allow for effectively training deeper networks,
alleviating the gradient vanishing problem

Let x ∈ R2×2048 be the input of a residual block, then the output is given
as:

g = f(x) + h(x)

where f is a block of two convolutional layers followed by ReLU activation
functions and BN layers, and h is the transfer function

h can be either a convolutional layer or an identity mapping (i.e., h(x) = x),
depending on whether or not f changes the dimensionality of its input

10/21

https://arxiv.org/abs/1512.03385


Deep Residual Networks

We tried various network depths, ranging from 10 to 54, the latter being
our final model

This network takes as input the whitened, normalized 1s samples and
outputs 2 values corresponding to the two possible outcomes: noise only
vs. noise + waveform

11/21



Deep Residual Networks

residual blocks filters strided input D

4 8 2×2048
1 16 ✓ 8×2048
2 16 16×1024
1 32 ✓ 16×1024
2 32 32×512
1 64 ✓ 32×512
2 64 64×256
1 64 ✓ 64×256
2 64 64×128
1 64 ✓ 64×128
2 64 64×64
5 32 64×64
3 16 32×64

12/21



Training

4.25s of noise are taken around each input sample to compute the PSDs for
each channel/detector

Each sample is whitened using its computed PSDs, then cropped to 1s

If positive (i.e., noise + waveform), the sample is cropped around the
reference time of coalescence, such that if falls within the 0.5s to 0.7s mark

The entire network is optimized using a regularized cross entropy objective
function

Final validation accuracy is around 61%

13/21



Training

14/21



Deployment

The test set is split in 4.25s long segments with a step size of 3.1s
The PSDs for each segment are computed
Each segment is split into 31 samples, using an internal step size of 0.1s,
which are processed as a batch
This results in triggers as shown below, which are then clustered in time

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
t t0

0.0

0.2

0.4

0.6

0.8

1.0

0.3s

positive

negative

15/21



Experiments

Effect of DAIN

100101102103
False alarms [1/day]

0

500

1000

1500

2000

2500

Se
ns

iti
ve

 d
ist

an
ce

 [M
pc

]

DAIN
BN
ADA

16/21



Experiments

Effect of residual connections

17/21



Experiments

Effect of depth

18/21



Final Results

19/21



Future Directions

We’ve been working on:

Larger training set - denser parameter space

Wider networks

Curriculum Learning

Further improving our results!

20/21



Thank you!
Questions?

21/21


