Deep Residual Networks for GW Astronomy

Aristotle University of Thessaloniki

Paraskevi Nousi

Alexandra E. Koloniari, Nikolaos Passalis, Panagiotis Iosif, Nikolaos Stergioulas, Anastasios Tefas

Overview

Motivation and Goal

- Participation in the first Machine Learning Gravitational-Wave Search Mock Data Challenge
- Four datasets of increasing difficulty: from Gaussian noise to real noise from the O3a observing run

Our contribution

- × Gaussian noise is not realistic
- \rightarrow We focus on the real noise scenario
- Using deep residual networks, adaptive input normalization to account for non-stationary inputs, batched whitening process, and input augmentations
- \rightarrow Leading algorithm among other ML-based submissions in real noise

MLGWSC

MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge

Marlin B. Schäfer^{1,2}, Ondřej Zelenka^{3,4}, Alexander H. Nitz^{1,2}, He Wang⁵, Shichao Wu^{1,2}, Zong-Kuan Guo⁵, Zhoujian Cao⁶, Zhixiang Ren⁷, Paraskevi Nousi⁸, Nikolaos Stergioulas⁹, Panagiotis Iosif^{10,9}, Alexandra E. Koloniari⁹, Anastasios Tefas⁸, Nikolaos Passalis⁸, Francesco Salemi^{11,12}, Gabriele Vedovato¹³, Sergey Klimenko¹⁴, Tanmaya Mishra¹⁴, Bernd Brügmann^{3,4}, Elena Cuoco^{15,16,17}, E. A. Huerta^{18,19}, Chris Messenger²⁰, Frank Ohme^{1,2} ¹Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-30167 Hannover, Germany ²Leibniz Universität Hannover, D-30167 Hannover, Germany ³Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany ⁴Michael Stifel Center Jena, D-07743 Jena, Germany ⁵CAS Key Laboratory of Theoretical Physics. Institute of Theoretical Physics. Chinese Academy of Sciences, Beijing 100190, China ⁶Department of Astronomy, Beijing Normal University, Beijing 100875, China ⁷Peng Cheng Laboratory, Shenzhen, 518055, China ⁸Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece ⁹Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece ¹⁰GSI Helmholtz Center for Heavy Ion Research, Planckstraße 1, 64291 Darmstadt, Germany ¹¹Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy ¹²INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy ¹³INFN, Sezione di Padova, I-35131 Padova, Italy ¹⁴Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA ¹⁵European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy ¹⁶Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy ¹⁷INFN, Sezione di Pisa, Largo Bruno Pontecorvo, 3, I-56127 Pisa, Italy ¹⁸Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, USA ¹⁹Department of Computer Science, University of Chicago, Chicago, Illinois 60637, USA and ²⁰SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 800, United Kingdom

https://arxiv.org/abs/2209.11146

MLGWSC-1

- github.com/gwastro/ml-mock-data-challenge-1
- objective characterization of ML GW detection algorithms
- allow for easy comparison between different search algorithms
- 4 datasets of increasing complexity
- common code to generate data:
 - O background (Gaussian or O3a noise)
 - O foreground (same noise + injected waveforms)
 - parameters of injected signals (IMRPhenomXPHM model: non-aligned, spinning BBH waveforms)
- evaluation set generated with the same code, with random seed withheld from participants algorithms

Our submission

Four basic components:

- Large training set
- Whitening process implemented as neural layer
- Adaptive input normalization
- Deep Residual networks

Training set

- Dataset 4 only
- We start by generating about 300k noise segments of 1.25s duration each, over the span of one week
- We generate a large number (about 20k) of waveforms with parameters within the given ranges
- Our training set then consists of about 600k samples, half noise only, half noise + waveform
- Noise and waveforms are combined once, before training
- → A validation set with about 86k samples is generated in a similar way, from 1 day of data
- \rightarrow Our test set is generated using the provided code (1 month)

Training Set

7/21

Whitening

- We found whitening to be an important preprocessing step
- But PyCBC's method is CPU-based, and processes each sample on its own
- \rightarrow So we implement whitening using PyTorch functions
 - Welch method, following PyCBC's methods including inverse spectrum truncation
 - Operations performed on GPU directly, no need for CPU utilization or CPU to GPU data transfer
 - O Some operations can be performed as batched

Deep Adaptive Input Normalization

Passalis et al. https://arxiv.org/abs/1902.07892

Deep Residual Networks

- Originally proposed for 2D image analysis (recognition, detection, etc.) https://arxiv.org/abs/1512.03385
- The residual connections allow for effectively training deeper networks, alleviating the gradient vanishing problem
- Let x ∈ R^{2×2048} be the input of a residual block, then the output is given as:

$$\mathbf{g} = f(\mathbf{x}) + h(\mathbf{x})$$

where f is a block of two convolutional layers followed by ReLU activation functions and BN layers, and h is the *transfer* function

h can be either a convolutional layer or an identity mapping (i.e., h(x) = x),
depending on whether or not f changes the dimensionality of its input

Deep Residual Networks

- We tried various network depths, ranging from 10 to 54, the latter being our final model
- This network takes as input the whitened, normalized 1s samples and outputs 2 values corresponding to the two possible outcomes: noise only vs. noise + waveform

Deep Residual Networks

filters	strided	input D
8		2×2048
16	\checkmark	8×2048
16		16×1024
32	\checkmark	16×1024
32		32×512
64	\checkmark	32×512
64		64×256
64	\checkmark	64×256
64		64×128
64	\checkmark	64×128
64		64×64
32		64×64
16		32×64
	filters	filters strided 8 \checkmark 16 \checkmark 32 \checkmark 32 \checkmark 64 \land 64 \land 64 \land 64 \land 64 \land 64 $ \land$ 64 $ \land$ 64 $ \land$ 64 $ \land$ 64

Training

- 4.25s of noise are taken around each input sample to compute the PSDs for each channel/detector
- Each sample is whitened using its computed PSDs, then cropped to 1s
- If positive (i.e., noise + waveform), the sample is cropped around the reference time of coalescence, such that if falls within the 0.5s to 0.7s mark
- The entire network is optimized using a regularized cross entropy objective function
- Final validation accuracy is around 61%

Training

Deployment

- The test set is split in 4.25s long segments with a step size of 3.1s
- The PSDs for each segment are computed
- Each segment is split into 31 samples, using an internal step size of 0.1s, which are processed as a batch
- This results in triggers as shown below, which are then clustered in time

Experiments

Effect of DAIN

16/21

Experiments

Effect of residual connections

Experiments

Effect of depth

Final Results

We've been working on:

- Larger training set denser parameter space
- Wider networks
- Curriculum Learning

Further improving our results!

Thank you! Questions?