Accelerating binary neutron star template generation with machine learning g2net next challenges

Jacopo Tissino ¹ with Gregorio Carullo,² Matteo Breschi,² Rossella Gamba,² Stefano Schmidt,³ Sebastiano Bernuzzi²

¹Gran Sasso Science Institute, ²Jena University, ³Utrecht University

EGO, 2022-09-29

◆□▶ ◆@▶ ◆ E▶ ◆ E▶ E の Q @ 1/15

A neutron star merger (AI artist's rendition)

Measuring the properties of neutron star mergers allows us to explore:

- equations of state of dense, possibly exotic matter;
- strong-field GR, as well as the speed of GWs;
- multi-messenger astronomy: EM follow-up, neutrinos;
- neutron star populations;
- cosmology (BNS mergers are independent standard sirens);

◆□▶ ◆@▶ ◆ E▶ ◆ E▶ E - のへで 3/15

r-process nucleosynthesis.

The likelihood used in parameter estimation reads:

$$\Lambda(s|\theta) \propto \exp\left((h_{\theta}|s) - \frac{1}{2}(h_{\theta}|h_{\theta})\right), \qquad (1)$$

where (a|b) is the Wiener product:

$$(a|b) = 4 \operatorname{Re} \int_0^\infty \frac{\widetilde{a}^*(f)\widetilde{b}(f)}{S_n(f)} \mathrm{d}f \;.$$
 (2)

Typical number of evaluations of the likelihood required: $\gtrsim 10^7$. Parameter estimation takes days!

How do we model the emission from a compact binary coalescence?

- Post Newtonian (analytic, not accurate up to merger);
- Effective One Body (need to solve an ODE, accurate up to merger);
- Numerical Relativity (very expensive, our reference point).

A surrogate approximant for BNS, working in the frequency domain, trained on the EOB approximant TEOBResumS.

Residuals from Post-Newtonian waveforms

mlgw_bns structure

Relevant distance measure:

$$\overline{\mathcal{F}}(a,b) = 1 - \mathcal{F}(a,b) = 1 - \frac{\max_{\varphi_0,t_c}(a|b)}{\sqrt{(a|a)(b|b)}}.$$
(3)

The accuracy requirement depends on the SNR:

$$\overline{\mathcal{F}} \lesssim \frac{n}{\mathrm{SNR}^2}$$
, (4)

< □ > < @ > < E > < E > E のQ · 9/15

where n is the number of parameters.

Fidelity results

Evaluation time

GW170817 uniform grid: $N_{\text{points}} = (f_{\text{max}} - f_{\text{min}}) T_{\text{signal}} \approx 2 \times 10^5$. With ROQ:

$$(d, h_{\theta})_{\text{ROQ}} = \sum_{i=1}^{N_L} \omega_j(t_c) h_{\theta}(f_i; \theta) , \qquad (5)$$

and similarly for the (h_{θ}, h_{θ}) term with N_Q points. For GW170817, $N_Q + N_L \approx 300$.

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · 의 Q · 12/15

Full parameter estimation timings

- TEOBResumS + No ROQ \sim 57h 30m;
- TEOBResumS + ROQ \gtrsim 40h (not measured);

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 13/15

- mlgw_bns + No ROQ: ~ 49h 20m;
- mlgw_bns + ROQ: ~ 4h 20m.

A posterior distribution: GW170817

pip install mlgw-bns

Documentation is available at mlgw-bns.readthedocs.io.

▲□▶ < 圕▶ < 틸▶ < 틸▶ 월
 ⑦<
 ○
 15/15

Backup slides

Backup slides!

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ◆ ○ へ ○ 16/15

Technologies

 $mlgw_bns$ is implemented as a python package, and it makes use of

- scikit-learn for the neural network (upgrading to pytorch);
- optuna for the hyperparameter optimization;
- pytest and tox for automated testing;
- numba for just-in-time compilation and acceleration.

Reconstruction residuals

Profiling the evaluation: 8×10^3 interpolation points

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ∽ Q · 19/15

Profiling the evaluation: 2×10^6 interpolation points

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PCA-only reconstruction error

◆□ → ◆□ → ◆ = → ◆ = ・ ○ へ ○ 21/15

Amplitudes

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q · 22/15

Phases

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 23/15

We do (currently) consider:

- intrinsic parameters: (source-frame) total mass $M = m_1 + m_2$, mass ratio $q = m_1/m_2$, aligned spins χ_{1z} and χ_{2z} , tidal polarizabilities Λ_1 and Λ_2 ;
- extrinsic parameters: luminosity distance D_L , inclination ι , initial phase ϕ_0 , coalescence time t_c ;
- considered but not in the waveform: sky position (ra and dec), polarization angle ψ , redshift z.

We do not consider: precessing spins, eccentricity (both decent approximations for BNS).

Hyperparameters optimized

- PC exponent α : the network reconstructs PC_i λ_i^{α} , where λ_i is the eingenvalue and PC_i is its eigenvector;
- layer sizes: 2 to 4 layers between 10 and 200 nodes;
- activation function and L2 regularization parameter;
- training parameters: initial learning rate, tolerance, batch size, stopping criterion;
- number of waveforms available for training.

are optimized by a MOTPE (Multi-objective tree-structured Parzen Estimator) of:

- (L2) reconstruction error;
- network training time.

Power Spectral densities and GW170817

26/15

Frequency grid histograms

27/15

Hyperparameter optimization

Pareto-front Plot

Error [log10(average square error)]

<□ > < @ > < E > < E > ○ Q · 28/15