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We are like any other observatory
• We wish to infer the global properties of some objects (BHs)… 
• …by observing only some of them.

Not all BH binaries are created equal.  
Some are easier to see: 

•  Large masses (but still on stellar scales) 
•  Large aligned spins (waveform is longer) 
•  Inclination: face on/off 
•  Preferred locations in the sky

Accurate inference relies on accurate 
knowledge of the detector response 

For a review: Vitale, DG+ 2020

eter and lost. A mirror located between the beam splitter and the 

output port will either decrease or increase the detection bandwidth, 

depending on the reflectivity and microscopic position of the mirror. 

Signal recycling refers to a decrease in detection bandwidth and an 

increase in peak sensitivity.  Resonant sideband extraction (RSE), on 

the other hand, makes the detector more broadband at the expense 

of peak sensitivity.

Resonant sideband extraction facilitates high stored arm power with 

only minimal power recycling. This reduces power absorption of the 

beam splitter and input test masses. The narrow-band arm cavities 

then accomplish most of the power recycling, and RSE allows the de-

tection bandwidth to remain broad.

In a 1993 publication, Mizuno and coauthors warn the reader against 

confusion of RSE with signal recycling. This warning was not heeded 

when the Advanced LIGO subsystems were being named! It may come 

as a surprise to some members of the collaboration to learn that the 

technique used in Advanced LIGO is RSE, not signal recycling.  In com-

bination with each other, recycling and extraction techniques provide 

designers of gravitational wave interferometers with several indepen-

dent knobs to tune the interferometer’s optical sensitivity.

How does it Work? Signal Liberation

Gravitational wave interferometers are incredibly complicated ma-

chines with multitudes of possible configurations. The sheer number of 

parameters necessary to describe a particular configuration is daunting. 

Despite the high dimensionality of the configuration space, the peak 

strain sensitivity of the interferometer related to the optical system 

depends on just three parameters: the laser wavelength, the detection 

bandwidth of the interferometer, and the total light energy stored in 

the system. Collectively known as the Mizuno limit, these factors moti-

vate our choice of optical parameters in order to optimize the interfer-

ometer’s sensitivity to gravitational waves.  

The Fabry-Perot arms of LIGO’s interferometers consist of a partially 

transmissive input test mass (ITM) and a highly reflective end test mass. 

The arms enhance the gravitational wave signal by forcing the light to 

circulate many times before detection (see How does it work? An opti-

cal cavity, LIGO Magazine Issue 1). From the point of view of the Mizuno 

limit, a change in ITM reflectivity modifies both the amount of stored 

light energy and the detection bandwidth. However with the use of ad-

ditional partially transmissive optics at the input and output ports of 

the interferometer, it is possible to adjust the stored energy and de-

tection bandwidth independently. A power recycling mirror located 

between the beam splitter and the laser can increase the stored energy 

by recycling light that would normally be reflected by the interferom-
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Detection probability

•    : Intrisic parameters (masses, spins,…) 
•    :  Extrinsic parameters (sky location, inclination,…) 
•    :  Redshift (or distance)

The key quantity we want: 
Probability that LIGO/Virgo will observe a source
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Two strategies: 
• Software injections (same procedure used for detection!) 
• Used to calibrate a ranking statistics

⇢2 = 4

Z
h̃(f)h̃⇤(f)

S(f)
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SNR Detectable: 
⇢ > 8
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(single LIGO) 
(LIGO/Virgo network) 
LIGO/Virgo 2016, 2018, Chen+ 2017
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Many pdet’s
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Thresholding the SNR

We (usually at least) are not interested in the extrinsic parameters:

And at the end of the day we just want a population average
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Key ingredients:
•  Compute the SNR  
•  Pdf of the extrinsic parameters (usually easy: isotropic) 
•  Pdf of the intrinsic parameters (specific population model)

�

<latexit sha1_base64="87p802AjPb7Cs/EP/Opj7RaGDGU=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4A2lJvJpB06mYSZiVBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGdzO/88SU5ol8NJOU+TEOJY84RWOlTl/YaIiDas2tu3OQVeIVpAYFmoPqVz9MaBYzaahArXuemxo/R2U4FWxa6WeapUjHOGQ9SyXGTPv5fN0pObNKSKJE2ScNmau/J3KMtZ7EgU3GaEZ62ZuJ/3m9zEQ3fs5lmhkm6eKjKBPEJGR2Owm5YtSIiSVIFbe7EjpChdTYhiq2BG/55FXSvqh7l/Wrh8ta47aoowwncArn4ME1NOAemtACCmN4hld4c1LnxXl3PhbRklPMHMMfOJ8/P12PhQ==</latexit>

: Population (hyper) parameters
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See Matt’s talk in a bit!



Semi-analytic pdet
Rewind from the 90s:  Finn Chernoff 1993, Chernoff 1996 

Key assumptions:
•  Single detector 
•  Dominant mode only 
•  No spin precession

Still state-of-art for O1-O2 LIGO analyses 
LVK O3a/b used injections 
Still used very much nonetheless!

• Universal curve 
• Cheap! One needs to 

compute a single SNR

Key results:
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Machine-learning classifiers
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space, see below), a single hidden layer with 32 neurons,
and a final outer layer which classifies the source as either
“detectable” or “not detectable.” The hidden (outer) layer
makes use of a hyperbolic tangent (sigmoid) activation
function. Inputs are preprocessed with an affine transfor-
mation and rescaled within [�1, 1] in each dimension. Neu-
ron weights are initialized using the Glorot algorithm [25].
Optimization is performed using the Adam optimizer [26]
with an initial learning rate of 10�2 and the binary-cross
entropy loss function [14]. The network is exposed to the
training data in batches of size 32 for up to 150 epochs.
After 10 training epochs, the learning rate is decreased
exponentially. In general, neural-network performances
increase with the size of the training sample, but so does
the computational cost of the training. Results presented
in this paper are based on neural networks that have
been trained and tested on two independent samples of
N = 107 sources each. We systematically explored a wide
variety of architectures varying over number of neurons
per layer, number of hidden layers, learning rate, dropout
rate, activation function, and batch size. The setup we
just described has been found to maximize the validation
accuracy at a reasonable computational cost. Training
each of the neural networks presented in this paper took
⇠ 30 hours on a single off-the-shelf CPU.

We present results obtained with three classifiers. In all
cases, training and validation sets are generated distribut-
ing detector-frame total masses Mz = M(1+z) uniformly
in [2M�, 1000M�], mass ratios q uniformly in [0.1, 1],
redshifts uniformly in [10�4, 4], and assuming isotropic
orientations ◆, sky locations ↵, �, and polarization angles
 . The largest value of z has been chosen to marginally
exceed the horizon redshift of all the sources in the sam-
ple. We stress that this distribution does not need to
represent a plausible astrophysical scenario but only allow
for accurate training. Once trained, the network can then
be evaluated on the chosen population

SNRs are computed with PyCBC [27] assuming
the IMRPhenomXPHM [28] waveform model and the
Planck 15 cosmology [29]. We consider a three-detector
network made of LIGO Hanford, LIGO Livingston, and
Virgo at their nominal design sensitivity [21]. When re-
ferring to single-detector SNRs ⇢S , we assume a single
LIGO instrument. Other neural networks trained using
sensitivity curves of LIGO/Virgo during their observing
runs O1, O2, O3, and O4 are provided at Ref. [30].

To compare our findings against analytic estimates
of pdet, we first develop a simpler network assuming
non-spinning sources (�1 = �2 = 0), considering only
the dominant (`, |m|) = (2, 2) mode, and using the
single-detector condition ⇢S > 8. Stepping up in com-
plexity, we then include higher-order modes (`, |m|) =
(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) and precessing sources with
spins distributed uniformly in magnitudes in [0, 1] and
isotropically in directions. In this case, we train networks
using both conditions ⇢S > 8 and ⇢N > 12.

Figure 2 shows the evolution of the neural-network
accuracies as a function of the training epoch. In this
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FIG. 2. Neural-network performances during the training
process. Solid (dashed) lines indicate the accuracy evaluated
over the validation (training) dataset. Colors indicate three
different neural networks trained considering: non-spinning
binaries, dominant emission mode, and single detector (blue);
precessing binaries, higher-order modes, and single detector
(orange); precessing binaries, higher-order modes, and three
detectors (green).

context, accuracy is simply defined as the fraction of the
inputs which are correctly identified as either “detectable”
or “not detectable”. Among all iterations, we select the
ones that maximize the validation accuracy. The final
values of accuracies and losses are reported in Table I.

As expected, the network trained on non-spinning
sources behaves better because it has to interpolate across
a smaller 7-dimensional parameter space. When consider-
ing the full 13-dimensional parameter space of precessing
binaries, we find that the condition ⇢N > 12 (⇢S > 8)
is easier (harder) to classify. This is because the beam
pattern of a combination of instruments is smoother com-
pared to that of a single interferometer [31]. Although
more instruments contribute to the SNR, it is worth
noting that ⇢N > 12 is a potentially stricter criterion
than ⇢S > 8 with the expected distribution scaling as
⇢�4 [19, 31]. All three neural networks show very similar
performances on validation and training sets, indicating
that we are not overfitting the data.

Not surprisingly, the events that the network cannot
identify correctly all have ⇢ ⇠ ⇢thr. There is roughly an
equal number of detectable sources which are classified
as “not detectable” and vice versa, which suggests that
the impact of this mismodeling will be further mitigated

• Fully connected neural network (MPL) 
• Implemented in TensorFlow 
• One hidden layer with 32 neurons 
• Adam optimizer 
• Glorot initializer 
• Tanh activation function

(✓, ⇠, z)

<latexit sha1_base64="QdP4DcxgFCvb4ceXQWECiNGhlXk=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJUKCWRih6LXjxWsB/QxLLZbtqlm03Ynag19H948aCIV/+LN/+N2zYHbX0w8Hhvhpl5fiy4Btv+tpaWV1bX1nMb+c2t7Z3dwt5+U0eJoqxBIxGptk80E1yyBnAQrB0rRkJfsJY/vJr4rXumNI/kLYxi5oWkL3nAKQEj3ZVcGDAgZfeRl59OuoWiXbGnwIvEyUgRZah3C19uL6JJyCRQQbTuOHYMXkoUcCrYOO8mmsWEDkmfdQyVJGTaS6dXj/GxUXo4iJQpCXiq/p5ISaj1KPRNZ0hgoOe9ifif10kguPBSLuMEmKSzRUEiMER4EgHuccUoiJEhhCpubsV0QBShYILKmxCc+ZcXSfO04lQrZzfVYu0yiyOHDtERKiEHnaMaukZ11EAUKfSMXtGb9WC9WO/Wx6x1ycpmDtAfWJ8/gemR4A==</latexit>

⇢(✓, ⇠, z) > ⇢thr

<latexit sha1_base64="vtBt7n83Ac2smqULW6jAvESA95s=">AAACCnicbVDLSgNBEJz1GeNr1aOX0SBECGFXInqSoBePEcwDsiHMTmazQ2YfzPSKccnZi7/ixYMiXv0Cb/6Ns0kOmljQUFR1093lxoIrsKxvY2FxaXllNbeWX9/Y3No2d3YbKkokZXUaiUi2XKKY4CGrAwfBWrFkJHAFa7qDq8xv3jGpeBTewjBmnYD0Q+5xSkBLXfPAkX5UdMBnQErOPS89HF9kUjd1ZIDBl6OuWbDK1hh4nthTUkBT1Lrml9OLaBKwEKggSrVtK4ZOSiRwKtgo7ySKxYQOSJ+1NQ1JwFQnHb8ywkda6WEvkrpCwGP190RKAqWGgas7AwK+mvUy8T+vnYB33kl5GCfAQjpZ5CUCQ4SzXHCPS0ZBDDUhVHJ9K6Y+kYSCTi+vQ7BnX54njZOyXSmf3lQK1ctpHDm0jw5REdnoDFXRNaqhOqLoET2jV/RmPBkvxrvxMWldMKYze+gPjM8fyTCaVw==</latexit>

⇢(✓, ⇠, z) < ⇢thr

<latexit sha1_base64="fL/vXSIHwcb90m6DBVC0RrSYlJ4=">AAACCnicbVC7SgNBFJ31GeNr1dJmNAgRQtiViBYWQRvLCOYB2RBmJ7PZIbMPZu6KcUlt46/YWChi6xfY+TfOJik08cCFwzn3cu89biy4Asv6NhYWl5ZXVnNr+fWNza1tc2e3oaJEUlankYhkyyWKCR6yOnAQrBVLRgJXsKY7uMr85h2TikfhLQxj1glIP+QepwS01DUPHOlHRQd8BqTk3PPSw/FFJnVTRwYYfDnqmgWrbI2B54k9JQU0Ra1rfjm9iCYBC4EKolTbtmLopEQCp4KN8k6iWEzogPRZW9OQBEx10vErI3yklR72IqkrBDxWf0+kJFBqGLi6MyDgq1kvE//z2gl4552Uh3ECLKSTRV4iMEQ4ywX3uGQUxFATQiXXt2LqE0ko6PTyOgR79uV50jgp25Xy6U2lUL2cxpFD++gQFZGNzlAVXaMaqiOKHtEzekVvxpPxYrwbH5PWBWM6s4f+wPj8AcYMmlU=</latexit>

Network architecture

3

space, see below), a single hidden layer with 32 neurons,
and a final outer layer which classifies the source as either
“detectable” or “not detectable.” The hidden (outer) layer
makes use of a hyperbolic tangent (sigmoid) activation
function. Inputs are preprocessed with an affine transfor-
mation and rescaled within [�1, 1] in each dimension. Neu-
ron weights are initialized using the Glorot algorithm [25].
Optimization is performed using the Adam optimizer [26]
with an initial learning rate of 10�2 and the binary-cross
entropy loss function [14]. The network is exposed to the
training data in batches of size 32 for up to 150 epochs.
After 10 training epochs, the learning rate is decreased
exponentially. In general, neural-network performances
increase with the size of the training sample, but so does
the computational cost of the training. Results presented
in this paper are based on neural networks that have
been trained and tested on two independent samples of
N = 107 sources each. We systematically explored a wide
variety of architectures varying over number of neurons
per layer, number of hidden layers, learning rate, dropout
rate, activation function, and batch size. The setup we
just described has been found to maximize the validation
accuracy at a reasonable computational cost. Training
each of the neural networks presented in this paper took
⇠ 30 hours on a single off-the-shelf CPU.

We present results obtained with three classifiers. In all
cases, training and validation sets are generated distribut-
ing detector-frame total masses Mz = M(1+z) uniformly
in [2M�, 1000M�], mass ratios q uniformly in [0.1, 1],
redshifts uniformly in [10�4, 4], and assuming isotropic
orientations ◆, sky locations ↵, �, and polarization angles
 . The largest value of z has been chosen to marginally
exceed the horizon redshift of all the sources in the sam-
ple. We stress that this distribution does not need to
represent a plausible astrophysical scenario but only allow
for accurate training. Once trained, the network can then
be evaluated on the chosen population

SNRs are computed with PyCBC [27] assuming
the IMRPhenomXPHM [28] waveform model and the
Planck 15 cosmology [29]. We consider a three-detector
network made of LIGO Hanford, LIGO Livingston, and
Virgo at their nominal design sensitivity [21]. When re-
ferring to single-detector SNRs ⇢S , we assume a single
LIGO instrument. Other neural networks trained using
sensitivity curves of LIGO/Virgo during their observing
runs O1, O2, O3, and O4 are provided at Ref. [30].

To compare our findings against analytic estimates
of pdet, we first develop a simpler network assuming
non-spinning sources (�1 = �2 = 0), considering only
the dominant (`, |m|) = (2, 2) mode, and using the
single-detector condition ⇢S > 8. Stepping up in com-
plexity, we then include higher-order modes (`, |m|) =
(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) and precessing sources with
spins distributed uniformly in magnitudes in [0, 1] and
isotropically in directions. In this case, we train networks
using both conditions ⇢S > 8 and ⇢N > 12.

Figure 2 shows the evolution of the neural-network
accuracies as a function of the training epoch. In this

0 50 100 150
Training epoch

0.974

0.976

0.978

0.980

0.982

0.984

0.986

0.988

A
cc

u
ra

cy

Non-spinning, quadrupole only, �S > 8

Precessing, higher harmonics, �S > 8

Precessing, higher harmonics, �N > 12

Validation

Training

FIG. 2. Neural-network performances during the training
process. Solid (dashed) lines indicate the accuracy evaluated
over the validation (training) dataset. Colors indicate three
different neural networks trained considering: non-spinning
binaries, dominant emission mode, and single detector (blue);
precessing binaries, higher-order modes, and single detector
(orange); precessing binaries, higher-order modes, and three
detectors (green).

context, accuracy is simply defined as the fraction of the
inputs which are correctly identified as either “detectable”
or “not detectable”. Among all iterations, we select the
ones that maximize the validation accuracy. The final
values of accuracies and losses are reported in Table I.

As expected, the network trained on non-spinning
sources behaves better because it has to interpolate across
a smaller 7-dimensional parameter space. When consider-
ing the full 13-dimensional parameter space of precessing
binaries, we find that the condition ⇢N > 12 (⇢S > 8)
is easier (harder) to classify. This is because the beam
pattern of a combination of instruments is smoother com-
pared to that of a single interferometer [31]. Although
more instruments contribute to the SNR, it is worth
noting that ⇢N > 12 is a potentially stricter criterion
than ⇢S > 8 with the expected distribution scaling as
⇢�4 [19, 31]. All three neural networks show very similar
performances on validation and training sets, indicating
that we are not overfitting the data.

Not surprisingly, the events that the network cannot
identify correctly all have ⇢ ⇠ ⇢thr. There is roughly an
equal number of detectable sources which are classified
as “not detectable” and vice versa, which suggests that
the impact of this mismodeling will be further mitigated
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II. GRAVITATIONAL-WAVE DETECTABILITY

A compact binary on a quasi-circular orbit is character-
ized by source-frame masses m1 and m2 (combined into
total mass M = m1+m2 and mass ratio q = m2/m1  1),
dimensionless spins �1 and �2, and redshift z. Position
and orientation with respect to the detectors are defined
in terms of right ascension ↵, declination �, orbital-plane
inclination ◆, and polarization angle  . To simplify the
notation, in the following we combine intrinsic and extrin-
sic parameters using the symbols ✓ = {M, q,�1,�2} and
� = {↵, �, ◆, }.

The SNR ⇢ [15, 16] is the most commonly employed
metric to estimate the detectability of GW signals. For
a single interferometer, the SNR ⇢S is defined as the
waveform inner product weighted by the detector response
and integrated in the frequency domain. The SNR of a
network of instruments is given by ⇢N =

pP
i ⇢

2
Si where

i labels the individual interferometers. In particular, it
is common practice to approximate GW selection biases
using a threshold in the SNR: an event is deemed as (not)
detectable if ⇢ > ⇢thr (⇢ < ⇢thr). Although thresholding
the events based on the SNR does not fully take into
account the empirical trigger distribution returned by
the detection pipelines [17, 18], it has been shown to
faithfully reproduce the performance of current detectors.
For instance, Refs. [11, 19–21] found that the performance
of the LIGO/Virgo network can be described by either
⇢S > 8 or ⇢N > 12.

Because astrophysical models typically predict masses,
spins, and redshifts, one often needs to marginalize the
detectability over the extrinsic parameters �. For each
value of ✓ and z, one can define the detection probability
as

pdet(✓, z) =

Z
p(�) ⇥[⇢(✓, z,�) � ⇢thr] d� , (1)

where p(�) is the probability distribution function of � and
⇥ indicates the Heaviside step function. This expression is
directly related to the so-called effective spacetime volume
V T by

V T (✓) = Tobs

Z
pdet(✓, z)

dVc

dz

1

1 + z
dz , (2)

where Tobs is the time length of the observing run and Vc

is the comoving volume.
For the case of a single detector, non-precessing sources,

and considering only the dominant quadrupole mo-
ment, the integral in Eq. (1) can be computed semi-
analytically [9, 10]; the explicit calculation is reported in
Appendix A. In brief, one can factor out the dependency of
� on the SNR to obtain ⇢S(✓, z,�) = !(�)⇢S,opt(✓, z) [16],
where ⇢S,opt is the SNR of an “optimal” source located
overhead the detector with face-on inclination. Because
the projection function 0  !(�)  1 is universal, one
can easily convert any given probability distribution func-
tion p(�) into p(!). Computing the marginalized dis-
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FIG. 1. Comparison between the semi-analytic and neural-
network detectability. The black-dashed line shows the semi-
analytic estimate of pdet obtained from the cumulative dis-
tribution function of the projection parameter !, evaluated
at ! = ⇢thr/⇢Sopt with ⇢thr = 8. Trivially, one has pdet = 0
for ! > 1. The blue circles mark the corresponding estimate
obtained by numerically marginalizing over the prediction of
our non-spinning neural network evaluated on the validation
set. We use NMC = 104 Monte Carlo samples of p(�). A long
tail at large values of ! is omitted for clarity.

tribution pdet(✓, z) thus reduces to evaluating the cu-
mulative distribution function P (!) =

R 1
! p(!0)d!0 at

! = ⇢thr/⇢S,opt(✓, z) [6, 22, 23]. The most common
application is that of isotropic sources: in this case,
↵, cos �, cos ◆, and  are uniformly distributed and P (!)
assumes the familiar shape reported with a dashed black
line in Fig. 1. In this simplified scenario, estimating GW
selection biases requires the evaluation of a single SNR
⇢S,opt.

III. MACHINE-LEARNING IMPLEMENTATION

This semi-analytical treatment breaks down in the more
general case where a multi-detector network is considered
(cf. e.g. Ref. [23]). Furthermore, the concept of an
optimally oriented source is not directly applicable if one
considers precessing binaries and GW harmonics beyond
the dominant mode.

We tackle this issue using machine learning. We
implement a neural-network classifier using Google’s
TensorFlow infrastructure [24]. We use a sequential Keras
model with three layers: an input layer with either 7 or
13 neurons (set by the dimensionality of input parameter

4

Training Validation “powerlaw” “log-uniform”

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Non-spinning, quadrupole only, ⇢S > 8 0.9867 0.0320 0.9867 0.0321 · · · · · · · · · · · ·
Precessing, higher harmonics, ⇢S > 8 0.9801 0.0470 0.9801 0.0471 0.9978 0.0051 0.9921 0.0185
Precessing, higher harmonics, ⇢N > 12 0.9839 0.0383 0.9839 0.0383 0.9981 0.0045 0.9928 0.0172

TABLE I. Accuracies and losses of the final trained models. We report performances evaluated on the training and validation
sets, which are generated with binaries distributed as specified in Sec. III. We also evaluate the classifiers on two astrophysically
motivated populations (“powerlaw” and “log-uniform”) from Refs. [1, 2], see Sec. IV for details. All samples in this table have
size N = 107.

when integrating to compute pdet and V T .
We stress that the loss and accuracy values depend on

the population one is trying to predict. The distributions
used in the training/testing process were deliberately
chosen to be “challenging” to classify: we overpopulate
regions of the parameter space at high SNR (low z and
high M) to encourage the network to better learn the
various correlations between the input parameters for
sources with ⇢ ⇠ ⇢thr.

IV. GRAVITATIONAL-WAVE POPULATIONS

We now compare our results against the analytic esti-
mate of pdet described in Sec. II and Appendix A. Once a
classifier has been trained, the detectability pdet(✓, z) can
be estimated by repeatedly sampling p(�) and count-
ing the number of draws which are identified as “de-
tectable”. Figure 1 shows such comparison for the non-
spinning, (2, 2)-mode neural network trained on the condi-
tion ⇢S > 8 and applied to (a fraction of) the test sample.
In this case, all the assumptions made in Sec. II to analyti-
cally average pdet hold and the two approaches should give
the same result. The blue histogram in Fig. 3 shows the
deviation �pnet between numerical and semi-analytical
evaluations. Our neural network reproduces the LIGO
detectability both qualitatively and quantitatively. We
report minor systematic deviations at large SNRs (small
value of !), where the neural network tends to slightly
overestimate the effective spacetime volume (top-left re-
gion in Fig. 1). More suitable network infrastructures
and/or training strategies might suppress this spurious
feature.

Now that we have established that our approach is
accurate, we explore whether determining pdet using a
single-detector SNR threshold for non-precessing bina-
ries and including only the leading order (2, 2) mode
—strategy adopted in the overwhelming majority of popu-
lation studies— describes the detection probability cor-
rectly across the source parameter space in observations
performed with multiple instruments. We therefore ap-
ply our model to cases where the assumptions behind the
semi-analytical estimate of pdet are not valid. We evaluate
the difference �pdet between the network prediction of
pdet and the corresponding estimate if one were to naively

�0.5 0.0 0.5 1.0
�pdet

10�2

10�1

100

101

Validation, non-spinning, quadrupole only, ⇢S >8

Validation, precessing, higher harmonics, ⇢N >12

“powerlaw”, precessing, higher harmonics, ⇢N >12

“log-uniform”, precessing, higher harmonics, ⇢N >12

FIG. 3. Probability distribution of the difference between the
detectability pdet estimated using our neural networks and the
semi-analytic calculation. The latter is only justified in the
case of non-precessing sources and a single detector (blue his-
togram). In the other three cases, the assumptions underlying
the analytic calculation are not valid. Here “Validation” (blue
and orange histograms) refers to the parameter distributions
used in the nominal validation process (cf. Fig. 2) while “pow-
erlaw” and “log-uniform” (green and red histograms) refer to
two test populations similar to those used in Refs. [1, 2] to
estimate BH merger rates.

apply the semi-analytic approach. More precisely, we com-
pute ! = 8/⇢S,opt assuming overhead sources with the
orbital angular momentum aligned with the line of sight at
the GW emission frequency fref = 20 Hz. The left (right)
region of Fig. 3 with �pdet < 0 (�pdet > 0) corresponds
to cases where the simplistic approach overestimates (un-
derestimates) the detector performance compared to the

Reproduces the analytics 
for the non-spinning 
single-detector case

Mismodeling for multiple 
detectors, precessing sources, 
and higher-order modes
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Figure 1. Two-dimensional density plots of the distribution of found injections before (top) and after (lower) applying
the transformations described in Section 5.1. Our aim is to transform the data to approximate a unit multivariate normal
distribution. In descending order these transformations are naive, CDF, approximate, and empirical (see the main text for
definitions). We note that the empirical scaling maps the data most closely onto a unit multivariate normal distribution.
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Figure 2. The average log-likelihood over the test and
training data of the trained Gaussian mixture model as a
function of the number of Gaussian components. We note
that the performance on the test data set flattens out after
⇠ 10 components, while the performance on the training
data continues to improve.

The Jacobian for this transformation is

dU

d✓
= p̃(✓) (24)

and can be trivially evaluated from our kernel density
estimate.
In Figure 1 we show the set of found injections in the

original (✓) space and each of the transformed spaces. In
descending order, the rows are the original data, naive
scaling, CDF scaling, approximate scaling, and empiri-
cal scaling respectively. Each of the transformations has
removed the railing against the boundaries in all the pa-
rameters. However, there are visible features remaining,
especially in the mass parameters. We note that the
empirical scaling most closely transforms the data to an
uncorrelated multivariate unit normal. We will use the
empirical scaling going forward unless otherwise speci-
fied.

5.2. Density estimation

Our aim is to take the regularized samples {✓0i} and es-
timate the density D using a Gaussian mixture model.
Training is performed by maximizing the mean natu-
ral log-density of the test samples as implemented in
scikit-learn (Pedregosa et al. 2011). Adding more
components will improve the quality of the fit. However,
by using too many components we risk over-fitting sta-
tistical fluctuations in the training set. To avoid this,
we split the samples into a training (80%) and a test
(20%) set. The fluctuations in the test set should be in-
dependent of those in the training set and therefore we
will choose the number of components when the quality

of the fit in the test set stops improving when adding
more components.
In Figure 2, we show the average log-density over the

training and test sample sets for the trained Gaussian
mixture models with varying numbers of components.
The o↵set between the two sets of points is simply due
to random fluctuations in the train/test split. Other re-
alizations can lead to a smaller mean log-density for the
test data set. We note that the performance on the test
data set flattens out after ⇠ 10 components, while the
performance on the training data continues to improve.
We, therefore, use 10 components in the remainder of
this work to avoid overfitting. In the subsequent sec-
tions, we use a 10-component Gaussian mixture model
density estimate D trained using all of the found injec-
tions {✓0i}.

5.3. Evaluation
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tion by drawing samples ✓
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model and applying the inverse of Eq. 12. Alternatively,
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D(✓0) =
pdet(✓)p(✓|⇤0)

J (✓)
. (25)

In practice, we want to evaluate the selection function

pdet(✓) =
J (✓)D(✓0)

p(✓|⇤0)
. (26)

Here J is the Jacobian from Equation 13 and p(✓|⇤0) is
the original distribution of injections. We use Eq. 26 as
an alternate means of computing Eq. 2 with an equiva-
lent Monte Carlo integral over samples from the popu-
lation distribution

Pdet(⇤) = hpdet(✓i)i✓i⇠p(✓|⇤) . (27)
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p̃(✓)

p(✓|⇤0)
. (28)

This can be very e�ciently evaluated as required.
We note that this method requires an e�cient method

of generating samples from the population distribution.
This can be trivially performed using inverse-transform
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vertible cumulative distribution function, or is a sum of
such distributions. For other population models (for ex-
ample, those using the low-mass smoothing introduced
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GW problem 

• Fit with Kernel density estimation + 
Gaussian mixtures 

• Higher level, fit the population-
average pdet directly
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How we put things together
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• Modeling selection effects instead requires propagat-
ing the tested population forward from past time
infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
of precession-averaged post-Newtonian (PN) evolutions.

II. STATISTICAL INFERENCE

The statistical problem we tackle is that of an inho-
mogeneous Poisson process including measurement errors
and selection effects [7, 8, 13]. We denote the parame-
ters of individual events with ✓ (e.g. BH masses, spins,
etc.) and those of the overarching population with �
(e.g. power-law index of the mass spectrum, etc.). The
targeted posterior is

p(�|d) / ⇡(�)��N (�)
NY

i=1

Z
ppop(✓|�)L(di|✓) d✓ (1)

where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
model, and ⇡(�) is a prior on the population parameters.
Selection effects enter the population likelihood via

�(�) =

Z
ppop(✓|�)pdet(✓)d✓ (2)

where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing

R
ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35

1 ,
p(m2|m1) / m2

2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,

1
From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2)

and dcc.ligo.org/LIGO-T2000012 (“Livingston”, for O3a).
2

See github.com/dgerosa/precession.
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infinity to detection.

We first travel back in time (20 ! 0 Hz) when treating the
event likelihoods and then “back to the future” (0 ! 20 Hz)
when handling selection effects. Our DeLorean consists
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and selection effects [7, 8, 13]. We denote the parame-
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etc.) and those of the overarching population with �
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targeted posterior is
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where i = 1, ..., N labels the events in the catalog, d
indicates the entire data stream, di indicates a short
stretch of data around event i, L(di|✓) is the likelihood
of the single-event analysis, ppop(✓|�) is the population
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where pdet(✓) 2 [0, 1] is the detection probability given a
binary with parameters ✓. The posterior of Eq. (1) has
been marginalized over the expected number of events
with a scale-free prior. The hyperparameters � thus only
capture the shape of the population distribution and
not the corresponding merger rate; this is equivalent to
imposing
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ppop(✓|�) = 1.

For ppop(✓|�), we use the phenomenological model re-
ferred to as Power Law + Peak and Default Spin in
Ref. [5], which returns the highest Bayes factor among the
options they tested. The model covers dim(✓) = 6 event
parameters and dim(�) = 12 population parameters. The
distribution of the primary mass m1 is a superposition
of a power-law component with index ↵ truncated be-
tween mmax and mmin and a Gaussian component with
mean µm, width �m, and mixing fraction �m. The sec-
ondary mass m2 conditioned on m1 follows a power-law
distribution with index �q. The distributions of m1,2 are
smoothed over a range �m near mmin. The spin magni-
tudes �1,2 follow a beta distribution with mean µ� and
variance �2

�. The cosines of the angles between the spins
and the orbital angular momentum ✓1,2 are distributed
assuming a superposition of a uniform distribution and
a truncated Gaussian with a peak at cos ✓1,2 = 1, width
�t, and mixing fraction ⇣. Crucially, while we adopt the
same functional form of Ref. [5], the spin tilts ✓1,2 are

here inserted at past time infinity and not at detection.
The distributions of all other parameters (distance, sky
location, etc.) is assumed to be independent of � and
equal to the prior used in the underlying single-event
analyses.

The integrals at the numerator of Eq. (1) are approx-
imated with Monte Carlo summations using samples of
the posterior p(✓|di) / L(di|✓)⇡(✓) from the data release
accompanying Refs. [14] (O1+O2) and [2] (O3a), which in
total include 44 GW events with false-alarm rate < 1 yr�1.
The single-event priors ⇡(✓) are handled analytically with
suitable reweighting factors [15].

For the Power Law + Peak and Default Spin
model, BH masses and spins are not correlated and, con-
sequently, the population model ppop(✓|�) can be written
as the product of two terms, one only including masses
and one only including spins. In Ref. [5], the spin part
was included only in the integral of Eq. (1), and not in
that of Eq. (2). When computing �(�), they instead used
a fixed spin distribution, thus neglecting some � depen-
dencies and introducing a bias. This was motivated by
the large computational cost of the search injections used
to estimate pdet(✓).

We find that a simpler pdet(✓) prescription (as used pre-
viously, e.g. [16]) fully reproduces the results of Ref. [5]
while allowing for a consistent inclusion of spin effects.
In particular, we use the semianalytic approximation
of Ref. [17], assuming two data-taking periods of ap-
proximately 166 days (O1+O2 [1, 18]) and 150 days
(O3a [2]), and a single-detector signal-to-noise ratio (SNR)
threshold of 8 [19]. SNRs are computed with representa-
tive noise curves1 and the IMRPhenomPv2 waveform
model [20]. The integral at the denominator of Eq. (1)
is approximated with a Monte Carlo sum using samples
drawn from an injected population with p(m1) / m�2.35
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2 [2], uniform spin magnitudes, spin di-
rections with equally weighted isotropic and preferen-
tially aligned components (⇣ = 0.5 and �t = 0.02), and
redshifts distributed uniformly in comoving volume and
source-frame time.

The prior ⇡(�) is uniform over all 12 population param-
eters with limits and additional cuts as in Ref. [5]. We
sample p(�|d) using GWPopulation [21], Dynesty [22],
and Bilby [23].

III. SPIN PROPAGATION

We propagate BH spin orientations across emission
frequencies using the precession-averaged PN formalism
first developed in Refs. [11, 24]. We use an updated
version of the precession code2 which, leveraging new
analytical advancements [25, 26] and numerical recipes,
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single yes/no variable (“is this input binary detectable?”).
An alternative strategy to estimate GW selection biases
using machine learning would be to implement a regression
neural network to interpolate the SNR [34]. In this case,
the detectability condition ⇢ > ⇢thr can be evaluated at
runtime using the predicted values of ⇢. A classifier like
ours has the obvious drawback that a new model needs
to be trained for each choice of the SNR threshold ⇢thr
(but note that the vast majority of the computational cost
lies in building the training sample and does not need to
be repeated). The advantage is that our infrastructure
can be trained on detectability conditions that are more
accurate than a simple SNR threshold.

Our approach will show its full potential when used
in conjunction with large software injections campaigns,
like those presented in Refs. [1, 2] to estimate detection
rates. Although undoubtedly more accurate at modeling
selection biases, such estimates are not currently used in
most GW population studies because of their high com-
putational cost. We believe a machine-learning treatment
like the one explored in this paper is a promising way
forward. We recommend that analyses reporting GW
events should make public the estimate of the detection
probability across the parameter space covered by the
search, to be used down-stream in population studies
through, e.g., an approach like ours.
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Appendix A: Semi-analytic estimate of pdet

The integral in Eq. (1) can be carried out semi-
analytically for the case a single detector, non-precessing
sources, and considering only the dominant quadrupole
emission mode.

In this simpler case, let us define the sky location of
the source with a polar angle # and an azimuthal angle
�. This is equivalent to � = ⇡/2 � # and � = ↵ for a
detector located at the north pole with one arm directed

toward the vernal equinox. Given an incoming GW with
polarizations h+ and h⇥, an interferometer with 90�-arms
is sensitive to the combination

h(t) = F+h+(t) + F⇥h⇥(t), (A1)

where the beam patterns are given by [16]

F+ =
1

2

�
1 + cos2 #

�
cos 2� cos 2 � cos# sin 2� sin 2 ,

(A2)

F⇥ =
1

2

�
1 + cos2 #

�
cos 2� sin 2 + cos# sin 2� cos 2 .

(A3)

If spin precession and higher harmonics are neglected, the
GW emission of binary coalescence is given by

h+(t) = A(t)
1 + cos2 ◆

2
cos �(t), (A4)

h⇥(t) = A(t) cos ◆ sin �(t), (A5)

where amplitude A(t) and phase �(t) are predicted by the
chosen waveform approximant. One can rewrite Eq. (A1)
as

h(t) = !A(t) cos[�(t) � �0] . (A6)

where [9, 10]

! =

s✓
F+

1 + cos2 ◆

2

◆2

+ (F⇥ cos ◆)2 , (A7)

tan �0 =
2F⇥ cos ◆

F+(1 + cos2 ◆)
. (A8)

It is straightforward to show that max◆,#,�, ! = 1. This
maximum is obtained when ◆ = 0 (i.e. the source is face-
on) and # = 0 (i.e. the source is overhead the detector).
Let us call such a source “optimal”. The factorization of
Eq. (A6) implies that the SNR of generic binary ⇢ can
be written as ⇢ = w⇢opt. One has p(�)d� = p(!)d! and
thus, from Eq. (1),

pdet =

Z
p(!) ⇥[!⇢opt � ⇢thr] d!

=

Z

!⇢opt>⇢thr

p(!) d! =

Z 1

⇢thr/⇢opt

p(!) d! . (A9)

The above expression is formally valid for ⇢opt � ⇢thr.
For ⇢opt < ⇢thr one has, trivially, pdet = 0.

Let us note that Refs. [9, 10] make use of the equivalent
notation ⇥ ⌘ 4!. For the case of isotropic sources, an
analytic fit to the integral in Eq. (A9) is provided in
Ref. [23]; a public Monte Carlo implementation is available
at Ref. [35].
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It is straightforward to show that max◆,#,�, ! = 1. This
maximum is obtained when ◆ = 0 (i.e. the source is face-
on) and # = 0 (i.e. the source is overhead the detector).
Let us call such a source “optimal”. The factorization of
Eq. (A6) implies that the SNR of generic binary ⇢ can
be written as ⇢ = w⇢opt. One has p(�)d� = p(!)d! and
thus, from Eq. (1),
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The above expression is formally valid for ⇢opt � ⇢thr.
For ⇢opt < ⇢thr one has, trivially, pdet = 0.

Let us note that Refs. [9, 10] make use of the equivalent
notation ⇥ ⌘ 4!. For the case of isotropic sources, an
analytic fit to the integral in Eq. (A9) is provided in
Ref. [23]; a public Monte Carlo implementation is available
at Ref. [35].
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single yes/no variable (“is this input binary detectable?”).
An alternative strategy to estimate GW selection biases
using machine learning would be to implement a regression
neural network to interpolate the SNR [34]. In this case,
the detectability condition ⇢ > ⇢thr can be evaluated at
runtime using the predicted values of ⇢. A classifier like
ours has the obvious drawback that a new model needs
to be trained for each choice of the SNR threshold ⇢thr
(but note that the vast majority of the computational cost
lies in building the training sample and does not need to
be repeated). The advantage is that our infrastructure
can be trained on detectability conditions that are more
accurate than a simple SNR threshold.

Our approach will show its full potential when used
in conjunction with large software injections campaigns,
like those presented in Refs. [1, 2] to estimate detection
rates. Although undoubtedly more accurate at modeling
selection biases, such estimates are not currently used in
most GW population studies because of their high com-
putational cost. We believe a machine-learning treatment
like the one explored in this paper is a promising way
forward. We recommend that analyses reporting GW
events should make public the estimate of the detection
probability across the parameter space covered by the
search, to be used down-stream in population studies
through, e.g., an approach like ours.
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