Core Optics

Materials Properties and Heat Extraction

ISB WORKSHOP OCTOBER 2022

A. AMATO, I. MARTIN, B. SASSOLAS & J. STEINLECHNER

Topics

Materials Parameters	Heat Extraction	
Substrate - Silicon	Laser Absorption	
Substrate - Sapphire	lce Layer problem	
Coatings	☐ Thermal Radiation ———→	See Fulvio Ricci's talk
	Fibres	See Graeme Eddolls' talk

Substrate Parameters - Silicon

The thermo-optic coefficient leads to thermal lensing, thermo-refractive noise and birefringence

 $Y_{
m silicon} = 130 - 180 \;
m GPa$

 $ho_{
m silicon} = 2,33 \text{ g/cm}^3$ (if 55 cm diameter, 210 kg, then t = 38 cm)

Class. Quantum Grav. 33 (2016) 015012

Thickness	Diameter	Mass	$\Delta n \times 10^{-7}$
(mm)	(mm)	(kg)	
65 28 30	100 24 24 24	1.2 0.059 0.063	0.23–1.07 1.08–1.11 0.33–0.49

All the substrates have the shape of cylinders with biconvex faces with the light propagating along the (111) direction.

Substrate Parameters - Silicon

Silicon

The IR optical absorption in crystalline silicon is normally limited by interband energy states associated with impurities. The maximum diameter and purity depend on the fabrication process.

Float Zone

- Small samples (Ø 20 cm)
- Low absorption: 4 50 ppm/cm (Optics letters 38.12 (2013): 2047-2049)

Magnetic Czochralski

- Large samples (Ø 45 cm)
- High (?) absorption (20 ppm/cm) (ET DR 2020)

Quasi-mono ingots (P. G. Murray – LVK Sept. 2020)

- Large samples (Ø 40 cm)
- High absorption ($3 \cdot 10^{-3} 1/cm$ -> Potential for 3 4 orders of magnitude improvement)
 - (thank to its size, QM silicon might be suitable for large ETMs where absorption can be greater)

Substrate Parameters - Silicon

Silicon

NB: Surface quality is also important for the absorption

Substrate Parameters - Sapphire

Sapphire

 $Y_{sapphire} = 450 - 490 \text{ GPa}$

LESCOP

 $\rho_{\text{sapphire}} = 3,97 - 3,99 \text{ g/cm}^3$ (if 55 cm diameter, 210 kg, then t = 22 cm)

Absorption @ 1064 nm of KAGRA TMs Values @1064 nm \rightarrow @1550 nm better ?

Substrate Parameters - Sapphire

Sapphire

Sapphire is a birefringent crystal, but the index of refraction on the plane (c plane) perpendicular to the C-axis would be uniform if the crystal were perfect

Both absorption and birefringence could be due to structural defects -> technological problem (LIGO-G2201668, LVK2022)

KAGRA is working with the companies providing the substrates in order to understand how to reliably lower the absorption and how to control the birefringence.

OSAG project in France:

- The oven has produced the first ingot of 200mm diameter. Characterizations will be done soon
- The absorption on 40mm diameter ingots is regularly around 10ppm/cm
- Quality factor measured on 2" diameter, 0.5mm thickness commercial grade sapphire wafer at 40K is around 2.5e8

Mater. Res. Soc. Symp. Proc., 2007

bulk a-SiO

SiN

Internal friction, Q¹^{film}

10⁻³

10⁻⁴

 10^{4} Frequency [Hz]

1,000

- Could meet thermal noise requirements
- Absorption is high but there is potential for improvement HR SiN/SiO2 (Optimize as Vigo ETM): 44 ppm k of 4.3E-6 observed at 2um for LPCVD (further study of IBS coatings of interest)

10

Refractive index related to stoichiometry (Could be used as high- or low-index layer)

Coating loss angle [rad] TiO2-Ta2O5 3 IBS, 900°C annealed J. Phys. Conf. Ser. 957, 012006 (2018) · LPCVD, as deposited

 10^{3}

10⁻⁵ LPCVD, 800°C annealed 10° 10² 10¹ Temperature (K) Chao & al., LIGO-G1700304, 2017

- SiN_{0.40} (n = 2.30@1064, n=2.28@1550)
- $SiN_{0.65}$ (n = 1.93@1064, n=1.92@1550)
- SiN_{0.87} (n = 1.78@1064, n=1.78@1550)

aSi

Significant potential for meeting thermal noise requirements

loss more than 10x lower than Ta2O5 at 10/20 K.

Advanced Virgo coatings

- Absorption can be 7-10x lower at 2 μ m compared to 1.55 μ m
- High refractive index -> few layers and thinner stack!

Current HR stack

Phys. Rev. Lett. 122(23) 231102 (2019)

It is in the first layers of the stack where laser reflection mainly occurs and the absorption of materials is crucial.

A theoretical stack, based on single layer measurements, is used as the current design for CTN curve:

Sub/(SiO₂:HfO₂/aSi)_n/(SiO₂/Ta₂O₅)₂

TABLE II. CTN of different coatings on cSi substrates at a reference frequency of 10 Hz, a temperature of 10 K and a beam radius of 9 cm. The material parameters used are shown in Tab. \boxed{I} .

Case	bilayers ETM (ITM)	Transmission ETM (ITM) [ppm]	Heat treatment $[^{\circ}C]$	CTN ETM (ITM) $[\times 10^{-21} \text{m}/$	$\frac{\text{CTN}_{\text{D}}}{\text{Hz}}$	$lpha_{ m HR}$ [ppm]
(a)	$18 (7) \times SiO_2/Ta_2O_5$	4 (8500)	600	4.0 (2.4)	6.6	0.6
(b)	$10 (4) \times \text{SiO}_2: \text{HfO}_2/\text{a-Si}$	2 (9000)	400	1.4(0.9)	2.4	11.9
(c)	$2 \times SiO_2/Ta_2O_5 + 10$ (4) × SiO ₂ :HfO ₂ /a-Si	4.4 (6000)	400	1.9(1.6)	3.5	3.4
ET-L	F requirement 13	5 (7000)			≈ 3.6	≤ 5

It might meet CTN requirements but needs verification and possible some more absorption reduction

AlGaAs - Crystalline

Development: LIGO-G2201621 (LVK Sep. 2022)

- Single-crystal AlGaAs HR coatings have 5× lower thermal noise than the best A+ IBS coatings.
- Low absorption (< 1 ppm)
- Low scattering (TIS) < 10 ppm</p>

It is usually grown on GaAs wafer and then transferred to the substrate:

- Development needed for large optics:
 - Bonding not confirmed for 20 cm

What if we use 20 cm ITM (Room T) and 70 cm ISB ETM (Cryo)?

- We can gain a factor of $\sqrt{2}$ for the CTN
- The costs need to be considered (AlGaAs development + Cryo + 70 cm optics)

What about suspensions, payload etc.. ?? <</p>

Costs: LIGO-G2201305

Estimated costs and time for different options:

- 20 cm on aLIGO test mass (smaller beams)
 - ≻ 8 M\$
 - ➤ 1-2 years
- 30 cm on a LIGO test mass
 - ➢ 20 M\$
 - 3-4 years
- 30-45 cm on 100 kg test mass
 >> 20 M\$
 > 5 years

AIGaAs > 45 cm ⇒ No cryo needed AIGaAs < 45 cm ⇒ only with cryo and larger ETM</p>

Heat in Test Mass

There are two main factors that generate heat in the core optics: Optical absorption and thermal radiation

Heat Absorbed by Test Mass

The absorption has to be small enough so the heat can be extracted through the suspension fibres **NB**: the amount of heat directly impacts the thickness of the fibres which impacts the suspension thermal noise.

Finesse, $\mathcal{F} = 880$ (old design report)

Recycling gain, $G_R = 21.6$

Build up factor, $\beta = 2\mathcal{F}/\pi$

Input power, $P_{in}^{ITM} = P_{arm}/\beta = G_R P_{in}/2 = 32 W$

<u>Power on Test Mass</u>

From Coating ($\alpha_{coat} = 5 \ ppm$)

 $P_{\text{coat}} = \alpha_{coat} P_{arm} = 90 \ mW$

From Substrate ($\alpha_{sub} = 10 \ ppm/cm$, incident + reflected, t = 40 cm)

$$P_{sub} = \alpha_{sub} \ 2 \ P_{in}^{ITM} \ t_{sub} = 25.7 \ mW$$

Heat Absorbed by Test Mass

Through measurements on the finesse of a FB cavity, they estimated fluctuations in reflectance

Significant increase in CTN which is also superimposed by an oscillation.

 $27 \pm 2 \text{ nm/day for a mirror at } 47 \text{ K}$ Difference between 10 K and 20 K?

Core Optics – Tasks for Workshop

Parameters

Heat Extraction

- Define better estimate about substrate production (diameter, absorption, ...)
- Define the missing data for R&D (both substrate and coatings)

AlGaAs: time and costs – Is it a real option?

- Define an upper limit of heat that can be extracted by the fibres
- Accordingly to the upper limit, define maximum absorption allowed

