

ET: LOW-FREQUENCY SENSITIVITY

S

G

S

JAN HARMS & CONOR MOW-LOWRY

ANM AND LOW-F SENSITIVITY

- Low-frequency noises in GW data that are influenced by interferometer & suspension sensing and control
- Low-frequency noises in GW data that can be mitigated by environmental sensing
- ANM IS NOT RESPONSIBLE FOR THE CONTROLS DESIGN OR MITIGATION OF MOST OF THESE NOISES
- ANM IS DEDICATED TO THE ANALYSIS OF LOW-F NOISE COUPLINGS, TO HIGHLIGHT DESIGN CHALLENGES, TO CREATE NOVEL ANALYSIS TOOLS, TO PROPOSE NEW MITIGATION STRATEGIES AND TO DESIGN SOME OF THEM

LIGO: LOW-F DETECTOR NOISE

Martynov et al, Phys. Rev. D 93, 112004 (2016)

3

EINSTEIN

ΗÍ

S G S

VIRGO: LOW-F DETECTOR NOISE

4

EINSTEIN

E

THE 4 ANM NOISE CATEGORIES

- AUXILIARY DEGREES OF FREEDOM (ANGULAR CONTROL, DAMPING OF SUSPENSION RESONANCES, CONTROL OF RECYCLING CAVITIES AND CENTRAL MICHELSON)
- ACTIVE SEISMIC ISOLATION (SENSOR NOISE, TILT-TO-HORIZONTAL COUPLING, INTER-PLATFORM MOTION)
- NEWTONIAN NOISE, MAGNETIC FLUCTUATIONS
- Scattered-light noise

G S S I

THE ET LOW-F CHALLENGE

S G S

NEWTONIAN GRAVITATIONAL NOISE ET

Finite-Element Simulations + seismic correlation data for array optimization

Underground construction greatly reduces, but does not completely remove, Newtonian gravitational noise from atmospheric and seismic fields.

-500

West-East [m]

(c) SPECFEM3D simulation.

 Image: series of the series

Newtonian noise must be subtracted using data from sensor networks. One of the most complex design tasks for Einstein Telescope.

ET ISB workshop; J Harms

West-East [m]

(d) PSD Wiener filter.

EINSTEIN

ATMOSPHERIC NN

New study: NN from atmospheric temperature fields cannot be neglected even underground

"World First: Ontario Council Include

"World First: Ontario Council Includes Infrasound in Wind Farm Noise Law"

MAGNETIC NOISE

If we don't do better than LIGO/Virgo (payload design, electronics design, reduced magnetic fluctuations)

Magnetic noise in Virgo

Cirone et al, CQG 36, 225004 (2019)

G S S I

CORRELATED NEWTONIAN NOISE E

10

EINSTEIN

G S

UNDERGROUND NOISE SOURCES

https://dcc.ligo.org/LIGO-G1601857

THE RELEVANCE OF GROUND TILT

Ross et al, CQG 37 185018 (2020)

S

G

S

S G S

UNDERGROUND SEISMIC NOISE

KAGRA

PLANS FOR ANM<>SUS PARALLEL SESSION

1st session Brief tutorials/demonstrations of simulation tools (Finesse, Lightsaber, SpicyPy).

2nd and 3rd sessions

Defining a first simplified model of the lower ET-LF suspension stages and its noise inputs and actuation scheme in the context of angular controls. Calculate the requirement of rms angular motion of arm-cavity mirrors for ET-LF.

4th session Simulation of the arm-cavity angular controls of ET-LF.

G S S I

A SMALL PART OF A COMPLEX SYSTEM

Allocca et al, Galaxies 8, 85 (2020)

10/18/2022

LIGO: ARM-CAVITY ANGULAR CONTROL

Goal: simulate the equivalent of this system for ET-LF

17

EINSTEIN

H

ET: RELEVANT DESIGN ASPECTS

LIGO angular controls noise (2016)

Why should the problem be less severe in ET-LF?Larger test masses

 Lower arm-cavity power (smaller optomechanical resonance frequencies)

Why might there still be a problem?
Observation band moves close to the oceanic microseismic peak
Some of the noise injected by controls in the observation band might be considered fundamental, e.g., DAC noise

STEPS OF THE ANALYSIS

Final suspension stages

- Response: actuator torque for pitch control [Nm] to testmass pitch motion [rad]
- Response: radiation-pressure torque [Nm] to test-mass pitch motion
- Noise input: suspensionresonance damping
- Noise input: top-stage
 platform motion

Arm cavity

- Response: pitch motion of test masses [rad] to beam-spot motion on test masses [m]
- Response: cavity-length fluctuations [m] to power fluctuations [W]
- Noise input: laser-power fluctuations [W]
- Noise input: sensing of pitch motion [eff. rad]