Science with the Einstein Telescope: a comparison of different designs

Michele Maggiore

FACULTÉ DES SCIENCES Département de physique théorique Maastricht, SPB meeting, Jan. 23, 2023

based on work in the OSB coordinated by M. Branchesi and MM

Motivations

The reference ET configuration:

- triangle, 10km arms
- 3 nested detectors in xylophone configuration (HF+LF cryo)

We want to evaluate the effect on the Science Case of

- changes in geometry: triangle vs 2L, and different arm-lengths
- role of low-frequency instrument

why now and not 10 yr ago?

when the basic layout of ET was first proposed (<2011) and until very recently, there were not even the elements for performing such a study

- only after GWTC-3 (+ recent theoretical population modeling) we have enough info on the coalescing binaries (redshift, mass distributions,...), so to optimize the ET design
- many of the most interesting specific Sciences Cases for 3G detectors have been developed only in recent years, in the flurry of activities after the first detection
- thanks to the OSB, we now have the large ET theoretical community needed to perform such a study (~80 people involved)

now this study becomes possible and, therefore, mandatory

configurations studied

geometries:

- triangle, 10km arms (the current baseline ET geometry)
- 2L, 15km arms, parallel
- 2L, 15km arms at 45°
- triangle, 15km arms
- 2L, 20km arms, parallel
- 2L, 20km arms at 45°

triangle-10km and 2L-15km or triangle-15km and 2L-20km

have roughly comparable excavation volumes: nested interferometers requires tunnels with larger diameter (~ 8m vs 6.5m) and more caverns.

A detailed cost analysis is necessary and is well beyond the scope of our work

structure of the work

Contents

1	Introduction								
2	Detector geometries and sensitivity curves								
3	 Coalescence of compact binaries 3.1 Binary Black Holes 3.2 Binary Neutron Stars 3.3 ET in a network of 3G detectors 								
4	Multi-messenger astrophysics4.1BNS sky-localization and pre-merger alerts4.2Gamma-ray bursts: joint GW and high-energy detections4.2.1Prompt emission4.2.2Afterglow: survey and pointing modes4.3Kilonovae: joint GW and optical detections								
5	 Stochastic backgrounds 5.1 Sensitivity to stochastic backgrounds 5.1.1 Power-law integrated sensitivity 5.1.2 Angular sensitivity 5.2 Astrophysical backgrounds 5.3 Impact of correlated magnetic, seismic and Newtonian noise 5.3.1 Seismic and Newtonian Noise 5.3.2 Magnetic noise 								

Independently of the comparison between geometries, it is currently the most detailed study of the science that can be done with ET

Latest release: ET-0291C-22, 11/01/23 under ET internal review

6	Imp	oacts o	f detector designs on specific science cases	63
	6.1	Physic	s near the BH horizon	64
		6.1.1	Testing the GR predictions for space-time dynamics near the horizon	64
		6.1.2	Searching for echoes and near-horizon structures	67
		6.1.3	Constraining tidal effects and multipolar structure	69
	6.2	Nuclea	ar physics	71
		6.2.1	Radius estimation from Fisher-matrix computation	72
		6.2.2	Full parameter estimation results	75
		6.2.3	Connected uncertainty of nuclear-physics parameters	76
		6.2.4	Postmerger detectability	78
		6.2.5	Conclusions: nuclear physics with ET	80
	6.3	Popula	ation studies	80
		6.3.1	Merger rate reconstruction	80
		6.3.2	Constraints on PBHs from high-redshift mergers	83
		6.3.3	Other PBH signatures	86
	6.4	Cosmo	blogy	89
		6.4.1	Hubble parameter and dark energy from joint GW/EM detections	89
		6.4.2	Hubble parameter and dark energy from BNS tidal deformability	101
		6.4.3	Hubble parameter from high-mass ratio events	104
	6.5	Cosm	ological stochastic backgrounds	108
		6.5.1	Cosmic Strings	108
		6.5.2	First-order phase transition	109
		6.5.3	Source separation	110
	6.6	Conti	nuous waves	112
		6.6.1	CWs from spinning neutron stars	113
		6.6.2	Transient CWs	116
		6.6.3	Search for dark matter with CWs	118
		6.6.4	Conclusions	121
7	\mathbf{Th}	e role	of the null stream in the triangle-2L comparison	122
8	Su	mmary	,	12 4
	8.1	Comp	parison of different geometries	125
	8.2	The r	ole of the low-frequency sensitivity	131
	8.3	Conc	lusions	135
A	Ser	nsitivit	y to stochastic backgrounds of misaligned 2L configurations	137
в	Tal	bles of	figures of merit for BBHs and BNSs	139

coalescence of compact binaries (BBH, BNS)

we study detection rates, range and distribution in redshift, accuracy in the reconstruction of the source parameters

very general metrics that already provide a first solid understanding

first step (lasted several months):

development and comparison of Fisher codes

- GWBENCH (Borhanian 2021, Borhanian and Sathyaprakash 2022)
- GWFISH (Harms, Dupletsa et al 2022, Ronchini et al 2022, GSSI group)
- GWFAST (lacovelli, Mancarella, Foffa, MM 2022, Geneva Group)
- TiDoFM (Li, Heng, Chan et al 2022)

• (Pieroni, Ricciardone, Barausse 2022)

other technical details:

- state-of-the art population models (Santoliquido et al 2021)
- state-of-the art waveform models
 - IMRPhenomXPHM for BBHs (includes precessing spins and higher-order modes)
 - IMRPhenomD_NRTidalv2 for BNS (includes tidal effects)
- inference on a large parameter space

 $\{\mathcal{M}_c, \eta, d_L, \theta, \phi, \iota, \psi, t_c, \Phi_c, \chi_{1,x}, \chi_{2,x}, \chi_{1,y}, \chi_{2,y}, \chi_{1,z}, \chi_{2,z}, \Lambda_1, \Lambda_2\}$

Configuration	$SNR \ge 8$	$SNR \ge 12$	$SNR \ge 50$	$SNR \ge 100$	$SNR \ge 200$
Δ -10km-HFLF-Cryo	103528	87568	13674	2298	282
Δ -15km-HFLF-Cryo	111231	101308	26092	5730	759
2L-15km-45°-HFLF-Cryo	107661	97205	23491	4933	644
2L-20km-45°-HFLF-Cryo	110698	103773	34009	8828	1267
2L-15km-0°-HFLF-Cryo	104935	94015	24088	5143	642
2L-20km-0°-HFLF-Cryo	106417	98274	32915	8551	1246
LVK-O5	8603	2861	47	4	2

Configuration	$\Delta d_L/d_L \le 0.1$	$\Delta d_L/d_L \le 0.01$	$\Delta\Omega_{90\%} \le 50 \rm deg^2$	$\Delta\Omega_{90\%} \le 10 \rm deg^2$
Δ-10km-HFLF-Cryo	10969	28	6064	914
Δ -15km-HFLF-Cryo	17321	77	10470	2273
2L-15km-45°-HFLF-Cryo	22237	202	10304	2124
2L-20km-45°-HFLF-Cryo	28801	365	14920	3648
2L-15km-0°-HFLF-Cryo	13865	79	3030	374
2L-20km-0°-HFLF-Cryo	17008	144	4706	608
			1005	
LVK-O5	767	1	1607	599

Configuration	$\Delta \mathcal{M}_c / \mathcal{M}_c \le 10^{-3}$	$\Delta \mathcal{M}_c / \mathcal{M}_c \le 10^{-4}$	$\Delta \chi_1 \le 0.05$	$\Delta \chi_1 \le 0.01$
Δ -10km-HFLF-Cryo	48 922	4549	27877	2811
Δ -15km-HFLF-Cryo	64469	7703	41612	4856
2L-15km-45°-HFLF-Cryo	58371	6456	35943	3958
2L-20km-45°-HFLF-Cryo	67999	9073	45666	5706
2L-15km-0°-HFLF-Cryo	57 330	6472	33236	3653
2L-20km-0°-HFLF-Cryo	63154	8279	40068	4935

- the baseline 10km triangle has, by itself, fantastic performances, improving by several orders of magnitudes on 2G detectors
- for BBH, the 2L-15km-45° improves significantly on the 10 km triangle for d_L and angular localization, and is slightly better (~2) for the other parameters

actually, 2L-15km-45° equal or better even than the 15 km triangle

• 2L with parallel arms quite disfavored, because of a comparatively poor angular localization capability

triangle 10-km well superior to LVK-O5 even in HF-only configuration

(except angular localization)

for BBH, the 2L-15km-45° HF-only is comparable or better than the 10km triangle at full sensitivity

Configuration	$\Delta d_L/d_L \le 0.1$	$\Delta d_L/d_L \le 0.01$	$\Delta\Omega_{90\%} \le 50 \rm deg^2$	$\Delta\Omega_{90\%} \le 10 \rm deg^2$
Δ -10km-HFLF-Cryo	10969	28	6064	914
Δ -15km-HFLF-Cryo	17321	77	10470	2273
2L-15km-45°-HFLF-Cryo	22237	202	10 304	2124
2L-20km-45°-HFLF-Cryo	28801	365	14920	3648
2L-15km-0°-HFLF-Cryo	13865	79	3030	374
2L-20km-0°-HFLF-Cryo	17008	144	4706	608
Δ -10km-HF	3919	6	2409	281
Δ -15km-HF	8083	26	5156	817
2L-15km-45°-HF	11 193	56	5263	835
2L-20km-45°-HF	16155	113	8448	1566
2L-15km-0°-HF	4111	17	1054	120
2L-20km-0°-HF	9693	57	2936	362

a single L-shaped detector, not inserted in a global network, is basically useless for those aspects of the Science Case, such as multimessenger astronomy or cosmology, that require accurate reconstruction of sky localization and distance of the sources

it is competitive on other parameters (assuming that glitches can be reliably vetoed)

BBH `golden' events

the 2L-45° and Δ -15km give the best compromise between detecting many of them, up to large redshift, and localizing them.

2L-15km-45°, even with HF-only, is comparable to Δ -10km with full HFLF-cryo sensitivity

BNS

confirms the basic message from BBHs

the baseline 10km triangle has remarkable performances, improving by orders of magnitude wrt 2G

the 2L-15km-45° improves by a further factor 2-3

2L-15km-0° disfavored

Losing the LF in the 10km triangle:

LF sensitivity particularly important for BNS (long time in bandwidth)

The 2L-15km-45° improves on the 10-km triangle

but now, 2L-15km-45° -HFonly is sensibly worse than triangle 10km full HFLF-cryo

again, LF especially important for BNS

BNS `golden' events

ET in a network with 1CE (40km) or 2CE (40km + 20km)

Configuration	$\Delta d_L/d_L \le 0.3$	$\Delta d_L/d_L \le 0.1$	$\Delta\Omega_{90\%} \le 100 \mathrm{deg}^2$	$\Delta\Omega_{90\%} \le 10 \mathrm{deg}^2$
	22.052	4100	F 1 00 1	0.107
Δ-10km-HFLF-Cryo+CE-40km	32053	4100	54 994	2427
2L-15km-45°-HFLF-Cryo+CE-40km	45252	7949	75828	3838
2L-15km-0°-HFLF-Cryo+CE-40km	16999	2079	29821	1515
Δ -10km-HFLF-Cryo+2CE	72335	13630	112705	6570
2L-15km-45°-HFLF-Cryo+2CE	89877	19129	145272	9841
2L-15km-0°-HFLF-Cryo+2CE	78798	14909	125640	7592

BNS

differences are smaller but still significant, especially with 1 CE

Multi-messenger Astrophysics with ET

Key parameters:

- Ability to localize the source
- Accessible Universe in terms of achieved z
- Pre-merger detection and PE

For the MM studies we use an SNR detection threshold of 8 We consider only 2L misaligned configurations

On-axis events

Full (HFLF cryo) sensitivity detectors											
$\Delta\Omega_{90\%}(\mathrm{deg}^2)$	$G_{0}(\text{deg}^{2})$ All orientation BNSs BNSs with viewing angle $\Theta_{v} < 15^{\circ}$					angle $\Theta_v < 15^\circ$					
	$\Delta 10$	$\Delta 15$	2L 15	2L 20	$\Delta 10$	$\Delta 15$	2L 15	2L 20			
10	11	27	24	45	0	1	2	5			
40	78	215	162	350	8	22	20	33			
100	280	764	644	1282	26	74	68	133			
1000	2112	5441	7478	13482	272	632	1045	1725			

2L with 15 km misaligned arms

- comparable to 15 km triangle
- better than 10 km triangle

Without low-frequency

Full (HFLF cryo) sensitivity detectors								
$\Delta\Omega_{90\%}(\mathrm{deg}^2)$		ll orien	tation B	NSs	BNSs with viewing angle $\Theta_v < 15^{\circ}$			
	$\Delta 10$	$\Delta 15$	2L 15	2L 20	$\Delta 10$	$\Delta 15$	2L 15	2L 20
10	11	27	24	45	0	1	2	5
40	78	215	162	350	8	22	20	33
100	280	764	644	1282	26	74	68	133
1000	2112	5441	7478	13482	272	632	1045	1725
			HF sens	sitivity d	etector	s		
$\Delta\Omega_{90\%}(\mathrm{deg}^2)$	Al	l orient	ation B	NSs	BNSs with viewing angle $\Theta_v < 15^{\circ}$			
	$\Delta 10$	$\Delta 15$	$2L\ 15$	2L 20	$\Delta 10$	$\Delta 15$	$2L \ 15$	2L 20
10	0	1	5	5	0	0	2	2
40	4	10	20	47	0	5	6	17
100	14	53	76	144	7	33	35	64
100						000	0 - 0	1000
1000	145	548	1662	3378	80	336	672	1302

- significantly smaller number of well-localized events
- decrease of well-localized events more severe for the triangle configurations
- a large fraction of well-localized events already missed at small z
- on-axis events, decrease of well-localized events but in a smaller percentage than events randomly oriented

Pre-merger detections

Full (HFLF cryo) sensitivity detectors									
Configuration	$\Delta\Omega_{90\%}$	$\Delta\Omega_{90\%}$ All orientat			BNSs	BNSs with $\Theta_v < 15^\circ$			
Comgutation	$[deg^2]$	30 min	$10 \min$	1 min	30 min	10 min	1 min		
	10	0	1	5	0	0	0		
Allkm	100	10	39	113	2	8	20		
	1000	85	293	819	10	34	10		
	All detected	905	4343	23597	81	393	2312		
	10	1	5	11	0	1	1		
A 15km	100	41	109	281	6	14	36		
	1000	279	806	2007	33	102	295		
	All detected	2489	11303	48127	221	1009	4024		
	10	0	1	8	0	0	0		
21. 15 km missligned	100	20	54	169	2	7	26		
2L 15 km misanghed	1000	194	565	1399	23	73	199		
	All detected	2172	9598	39499	198	863	3432		
	10	2	4	15	1	1	2		
2L 20 km misaligned	100	39	118	288	7	19	47		
	1000	403	1040	2427	47	128	346		
	All detected	4125	17294	56611	363	1588	4377		

Critical to detect the prompt/early multiwavelength emission

- to probe the central engine of GRBs, particularly to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (e.g. VHE prompt CTA/ET synergy)
- to probe the structure of the outer subrelativistic ejecta, early UV emission (e.g. ULTRASAT/UVEX/DORADO synergy)

Detections within z=1.5

Without low-frequency

HF sensitivity detectors										
Configuration	$\Delta\Omega_{90\%}$	All ori	entation 1	BNSs	BNSs	with Θ_v -	$< 15^{\circ}$			
Comgutation	$[\mathrm{deg}^2]$	30 min	10 min	$1 \min$	$30 \min$	$10 \min$	$1 \min$			
	100	0	0	0	0	0	0			
$\Delta 10 { m km}$	1000	0	0	4	0	0	1			
	All detected	0	3	317	0	0	26			
	100	0	0	2	0	0	0			
$\Delta 15 { m km}$	1000	0	0	10	0	0	4			
	All detected	2	8	891	0	0	84			
	100	0	0	0	0	0	0			
2L 15 km misaligned	1000	0	0	7	0	0	3			
	All detected	0	7	743	0	1	69			
	100	0	0	3	0	0	0			
2L 20 km misaligned	1000	0	0	13	0	0	6			
	All detected	2	11	1535	0	1	146			

NO localized pre-merger detections!

Detections within z=1.5

stochastic backgrounds

note: alignment angle defined wrt to North at one site: equivalent to 2.5 deg misalignment with angles defined with respect to great circle joining the detectors

correlated Netwonian, seismic and magnetic noise. A threat for the triangle?

impacts stochastic
backgrounds searches
but possibly also CBC
and unmodeled bursts

Impacts on specific science cases

6	Impacts of detector designs on specific science cases							
	6.1	Physic	cs near the BH horizon	64				
		6.1.1	Testing the GR predictions for space-time dynamics near the horizon	64				
		6.1.2	Searching for echoes and near-horizon structures	67				
		6.1.3	Constraining tidal effects and multipolar structure	69				
	6.2	Nuclea	ar physics	71				
		6.2.1	Radius estimation from Fisher-matrix computation	72				
		6.2.2	Full parameter estimation results	75				
		6.2.3	Connected uncertainty of nuclear-physics parameters	76				
		6.2.4	Postmerger detectability	78				
		6.2.5	Conclusions: nuclear physics with ET	80				
	6.3	Popul	ation studies	80				
		6.3.1	Merger rate reconstruction	80				
		6.3.2	Constraints on PBHs from high-redshift mergers	83				
		6.3.3	Other PBH signatures	86				
	6.4	Cosmo	blogy	89				
		6.4.1	Hubble parameter and dark energy from joint GW/EM detections	89				
		6.4.2	Hubble parameter and dark energy from BNS tidal deformability	101				
		6.4.3	Hubble parameter from high-mass ratio events	104				
	6.5	Cosm	ological stochastic backgrounds	108				
		6.5.1	Cosmic Strings	108				
		6.5.2	First-order phase transition	109				
		6.5.3	Source separation	110				
	6.6	Conti	nuous waves	112				
		6.6.1	CWs from spinning neutron stars	113				
		6.6.2	Transient CWs	116				
		6.6.3	Search for dark matter with CWs	118				
		6.6.4	Conclusions	121				
7	The	e role o	of the null stream in the triangle-2L comparison	122				
8	Sun	nmary		124				
	8.1	Comp	arison of different geometries	125				
	8.2	The r	ole of the low-frequency sensitivity	131				
	8.3	Concl	usions	135				
A	Sen	sitivit	y to stochastic backgrounds of misaligned 2L configurations	137				
в	Tab	les of	figures of merit for BBHs and BNSs	139				

Impacts on specific science cases

(a selection of the examples worked out)

Physics near BH horizon

SNR _{GW150914}	HFLF-cryo	HF-only
Δ -10 km	141	141
Δ -15 km	190	190
$2L-15 \text{ km}-0^{\circ}$	196	196
$2L-15 \text{ km}-45^{\circ}$	192	192
2L-20 km-0°	240	240
$2L-20 \text{ km}-45^{\circ}$	235	235

Ringdown SNR of GW150914-like event

$$\frac{\Delta f_{220}}{f_{220}} \sim 0.2\% \left(\frac{100}{\text{SNR}}\right) , \qquad \frac{\Delta \tau_{220}}{\tau_{220}} \sim 2\% \left(\frac{100}{\text{SNR}}\right)$$

	$N_{\rm det}({\rm SNR} \ge 12)$	$N_{\rm det}({\rm SNR} \ge 50)$	$N_{\rm det}({\rm SNR} \ge 100)$	$\max(SNR)$
LVKI-O5	22	0	0	34
\mathbf{ET}				
Δ -10 km	5272	41	4	255
Δ -15 km	12916	139	15	312
$2L-15 \text{ km-0}^{\circ}$	11602	109	11	265
2L-15 km-45°	11277	110	10	323
2L-20 km-0°	19081	248	22	309
2L-20 km-45°	18695	252	21	376

Ringdown detections per year

ET (+1CE)	$N_{\rm det}({\rm SNR} \ge 12)$	$N_{\rm det}({\rm SNR} \ge 50)$	$N_{\rm det}({\rm SNR} \ge 100)$	$\max(SNR)$
Δ -10 km	17690	202	17	296
Δ -15 km	24495	335	32	346
$2L-15 \text{ km-0}^{\circ}$	23202	311	29	304
$2L-15 \text{ km}-45^{\circ}$	23125	308	30	356
$2L-20 \text{ km-0}^{\circ}$	29278	490	45	343
$2L-20 \text{ km}-45^{\circ}$	29298	482	42	405
$\mathrm{ET}\left(+2\mathrm{CE}\right)$				
Δ -10 km	22056	290	26	302
Δ -15 km	28498	424	40	351
$2L-15 \text{ km-0}^{\circ}$	27146	408	39	311
$2L-15 \text{ km}-45^{\circ}$	27134	396	38	362
$2L-20 \text{ km-0}^{\circ}$	32796	606	54	348
2L-20 km-45°	33006	593	53	409

Differences remain significant also with 1 or 2 CE

distinguishing exotic compact objects from BHs

Nuclear Physics

one example:

2L-15 HF only as good as full 10km triangle

Population studies

Merger rate reconstruction

2L-15kboth 10km triangle and 2L-15km-45° reconstruct it correctly, but m-45° is better by a factor 2-3

primordial BHs

Detections at z> 30 are a smoking-gun signature

Configuration	$N_{\rm det}(z>10)[1/{\rm yr}]$	$N_{\rm det}(z>30)[1/{\rm yr}]$	$f_{\rm PBH}^{\rm constrained} \left[\times 10^{-5} \right]$
Δ -10 km	1140.01	76.81	2.61
Δ -15km	1763.87	260.65	1.42
$2L-15km-0^{\circ}$	1596.61	238.16	1.48
$2L-15km-45^{\circ}$	1650.87	220.86	1.54
2L-20km-0°	1983.97	433.82	1.10
$2L-20$ km- 45°	2080.13	415.80	1.12

(based on a PBH population model fitted to GWTC-3)

LF crucial: N(z>30) =0 otherwise !

Configuration	$N_{\rm det}(z > 10) [1/{\rm yr}]$	$N_{\rm det}(z > 30) [1/{\rm yr}]$	$f_{\rm PBH}^{\rm constrained} \left[\times 10^{-5} \right]$
CE40km	1373.48	47.07	3.34
Δ -10km + CE40km	1940.35	180.08	1.71
Δ -15km + CE40km	2275.96	372.14	1.19
$2L-15km-45^{\circ} + CE40km$	2210.49	332.89	1.26
$2L-20km-45^{\circ} + CE40km$	2476.43	522.32	1.00

significant differences also in a network with 1CE

Cosmology

Joint GW-GRB detections, ET+THESEUS

Joint GW-kilonova detections, ET+VRO

Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
Δ -10km	0.057	0.546
Δ -15km	0.035	0.290
$2L-15km-45^{\circ}$	0.040	0.370
$2L-20km-45^{\circ}$	0.029	0.276

HFLF cryogenic				
$\begin{tabular}{ c c c c } \hline Configuration & \Delta H_0/H_0 & \Delta \Omega_M/\Omega_M \end{tabular} \end{tabular}$				
Δ -10km	0.009	0.832		
Δ -15km	0.007	0.303		
$2L-15$ km- 45°	0.006	0.370		
$2L-20$ km- 45°	0.004	0.243		

HF only				
Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$		
Δ -10km	0.065	1.23		
Δ -15km	0.057	1.86		
$2L-15km-45^{\circ}$	0.066	1.31		
$2\text{L-}20\text{km-}45^{\circ}$	0.031	1.22		

Note: the bounds becomes stronger using the Planck prior on Ω_{M}

See the paper for DE EoS and modified GW propagation

NS source-frame mass (and then z) determined from tidal deformability of NS

Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
Δ -10km	9.63×10^{-3}	1.10×10^{-1}
Δ -15km	7.20×10^{-3}	6.62×10^{-2}
$2L-15km-45^{\circ}$	7.59×10^{-3}	7.47×10^{-2}
$2L-20km-45^{\circ}$	5.90×10^{-3}	5.04×10^{-2}

Summing up....

Comparison between geometries

- for BBH parameter estimation:
 - the 2L-15km-45° improves significantly on the 10 km triangle for d_L and angular localization, and is slightly better (~2) for the other parameters,
 - is equal or better even than the 15 km triangle
 - in a network with 1 or 2CE the differences are still significant

• for BNS, the effect is even larger

Configuration	$\Delta d_L/d_L \le 0.3$	$\Delta d_L/d_L \le 0.1$	$\Delta\Omega_{90\%} \le 100 \mathrm{deg}^2$	$\Delta\Omega_{90\%} \le 10 \rm deg^2$
Δ -10km-HFLF-Cryo	748	52	184	8
Δ -15km-HFLF-Cryo	1756	153	479	23
2L-15km-45°-HFLF-Cryo	4328	479	559	25
2L-20km-45°-HFLF-Cryo	7821	919	1028	43
2L-15km-0°-HFLF-Cryo	774	48	293	12
2L-20km-0°-HFLF-Cryo	1499	104	565	23

For multi-messenger astronomy:

- 2L-15km-45° better than 10 km triangle (and comparable to 15 km triangle) enabling observation of a larger number of well-localized events up to a larger redshift
- number of short GRBs with an associated GW signal increases by about 30%, and the number of expected kilonovae counterparts increases by a factor of 2
- pre-merger alerts for on-axis events localized within 10³ deg² increase by a factor of 2

for stochastic backgrounds

for the isotropic sensitivity: 2L at 45° the less good 2L parallel the best below 100 Hz triangle the best above 100Hz

For angular resolution: 2L better than triangle correlated Newtonian and seismic noise

a potential treath for the triangle

also, correlated magnetic noise and lightening strikes

individual science case typically show an improvement by a factor 2-3 from the 10km triangle to 2L-15km-45°

•	tests	of	GR:

$SNR_{GW150914}$	HFLF-cryo	. <u> </u>
Δ -10 km	141	
Δ -15 km	190	Δ
$2L-15 \text{ km}-0^{\circ}$	196	Δ
$2L-15 \text{ km}-45^{\circ}$	192	2L-1 2L-1

	$N_{\rm det}({\rm SNR} \ge 12)$	$N_{\rm det}({\rm SNR} \ge 50)$	$N_{\rm det}({\rm SNR} \ge 100)$	$\max(SNR)$
LVKI-O5	22	0	0	34
ET				
Δ -10 km	5272	41	4	255
Δ -15 km	12916	139	15	312
$2L-15 \text{ km-0}^{\circ}$	11602	109	11	265
$2L-15 \text{ km}-45^{\circ}$	11277	110	10	323

- nuclear physics: minor differences (ΔR from 10.0m to 6.4m)
- merger rate reconstruction; improvement by a factor ~3
- PBH: improvement by a factor ~3 for events at z>30

• cosmology: improvements ~1.5 on H₀, w₀, Ξ_0

In general, results for 2L-15km-45° quite comparable to 15-km triangle

The role of the LF instrument

For BNS, catastrophic degradation on sky localization and luminosity distance (LF allows BNS to stay a longtime in the bandwidth)

Configuration	$\Delta d_L/d_L \le 0.3$	$\Delta d_L/d_L \le 0.1$	$\Delta\Omega_{90\%} \le 100 \rm deg^2$	$\Delta\Omega_{90\%} \le 10 \rm deg^2$
Δ -10km-HFLF-Cryo	748	52	184	8
Δ -15km-HFLF-Cryo	1756	153	479	23
2L-15km-45°-HFLF-Cryo	4328	479	559	25
2L-20km-45°-HFLF-Cryo	7821	919	1028	43
2L-15km-0°-HFLF-Cryo	774	48	293	12
2L-20km-0°-HFLF-Cryo	1499	104	565	23
Δ -10km-HF	4	1	4	0
Δ -15km-HF	7	1	11	1
2L-15km-45°-HF	126	12	11	0
2L-20km-45°-HF	262	22	24	1
$2L-15km-0^{\circ}-HF$	20	1	11	1
$2L-20km-0^{\circ}-HF$	28	2	24	1

\Rightarrow no MMO, no standard sirens cosmology

• premerger alerts impossible without the LF instrument

$\Delta\Omega_{00\%}$	$\Delta\Omega_{00\%}$	All orientation BNSs			BNSs with $\Theta_v < 15^{\circ}$		< 15°	HF sensitivity detectors							
Configuration	$[\deg^2]$	30 min	10 min	1 min	30 min	10 min	1 min Configuration	$\Delta\Omega_{90\%}$	All ori	ientation	BNSs	BNSs	with Θ_v .	$< 15^{\circ}$	
	10	0	1	5	0	0	0	Configuration	$[\deg^2]$	30 min	10 min	1 min	$30 \min$	10 min	1 min
	100	10	39	113	2	8	20	$\Delta 10 { m km}$	100	0	0	0	0	0	0
$\Delta 10 { m km}$	1000	85	293	819	10	34	10		1000	0	0	4	0	0	1
	All detected	905	4343	23597	81	393	2312		All detected	0	3	317	0	0	26
•	Configuration	$\begin{array}{r} \Delta \Omega_{90\%} \\ \hline \\ \mbox{[deg^2]} \\ \\ \Delta 10 \mbox{km} \\ \hline \\ \mbox{100} \\ \hline \\ \mbox{1000} \\ \hline \\ \mbox{All detected} \\ \end{array}$	$\begin{array}{c} \Delta\Omega_{90\%} & \text{All or}\\ \hline [\text{deg}^2] & 30 \text{ min} \\ \\ \Delta 10 \text{km} & 10 & 0 \\ \hline 100 & 10 \\ \hline 1000 & 85 \\ \hline \text{All detected} & 905 \end{array}$	$\Delta\Omega_{90\%}$ All orientation [deg ²] 30 min 10 min 10 0 1 100 10 39 1000 85 293 All detected 905 4343	$\begin{array}{ c c c c c c } & \Delta \Omega_{90\%} & \mbox{All orientation BNSs} \\ \hline & & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs [deg ²] 30 min 10 min 1 min 30 min $\Delta\Omega_{90\%}$ 30 min 10 min 1 min 30 min $\Delta\Omega_{90\%}$ 0 1 1 min 30 min $\Delta\Omega_{90\%}$ 10 0 1 5 0 $\Delta\Omega_{90\%}$ 100 10 39 113 2 $\Delta 100$ 85 293 819 10 All detected 905 4343 23597 81	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs with Θ_v [deg ²] 30 min 10 min 1 min 30 min 10 min $\Delta\Omega_{90\%}$ 10 0 1 min 30 min 10 min 10 min $\Delta\Omega_{90\%}$ 10 0 1 1 min 30 min 10 min $\Delta\Omega_{90\%}$ 10 0 1 5 0 0 $\Delta\Omega_{90\%}$ 100 10 39 113 2 8 1000 85 293 819 10 34 All detected 905 4343 23597 81 393	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ [deg ²] 30 min 10 min 1 min 30 min 10 min 1 min $\Delta\Omega_{90\%}$ 10 0 1 1 min 30 min 10 min 1 min $\Delta\Omega_{90\%}$ 10 0 1 1 min 30 min 10 min 1 min $\Delta\Omega_{90\%}$ 10 0 1 5 0 0 0 $\Delta\Omega_{90\%}$ 10 39 113 2 8 20 $\Delta\Omega_{90\%}$ 85 293 819 10 34 10 All detected 905 4343 23597 81 393 2312	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ Configuration Ideal $[deg^2]$ 30 min 10 min 1 min 30 min 10 min 1 min Configuration $\Delta\Omega_{90\%}$ 10 0 1 1 min 30 min 10 min 1 min Configuration $\Delta\Omega_{90\%}$ 10 0 1 1 min 30 min 10 min 1 min Configuration $\Delta 10km$ 100 10 39 113 2 8 20 A10km $\Delta 100$ 85 293 819 10 34 10 $\Delta 10km$	Configuration $\Delta \Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF s $[deg^2]$ 30 min 10 min 1 min 30 min 10 min 1 min $\Lambda 10^{00\%}$ 10 min 1 min 30 min 10 min 1 min $\Omega \Omega_{90\%}$ $\Delta \Omega_{90\%}$ $\Lambda 10^{00}$ 0 1 Σ_5 0 0 0 Ω $\Lambda 10^{00}$ 10 39 113 2 8 20 $\Delta 10 km$ 100^{00} $\Lambda 10^{00}$ 85 293 819 10 34 10 $\Delta 10 km$ 1000^{0} All detected 905 4343 23597 81 393 2312 $\Delta 10 km$ All detected	Configuration $\Delta \Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF sensitivity $[deg^2]$ 30 min 10 min 1 min 30 min 10 min 1 min $\Lambda 10^{00\%}$ 10 0 1 5 0 0 0 $\Lambda 10^{00}$ 10 39 113 2 8 20 $\Lambda 10^{00}$ 100 0 0 $\Lambda 10^{00}$ 85 293 819 10 34 10 $\Lambda 10^{00}$ $\Lambda 10^{00}$ 0 $\Lambda 10^{00}$ 0 0 All detected 905 4343 23597 81 393 2312 $\Lambda 10^{00}$ $\Lambda 10^{00}$ $\Lambda 10^{00}$ $\Lambda 10^{00}$	Configuration $\Delta \Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF sensitivity detectors $[deg^2]$ 30 min 10 min 1 min 30 min 10 min 1 min $\Lambda 10^\circ$ 0 1 5 0 0 0 [deg^2] 30 min 10 min $\Lambda 10^\circ$ 10 1 5 0 0 0 [deg^2] 30 min 10 min $\Lambda 10^\circ$ 10 39 113 2 8 20 $\Lambda 10^\circ$ 10 0 0 0 $\Lambda 10^\circ$ 85 293 819 10 34 10 $\Lambda 10^\circ$ 1000 0 0 0 All detected 905 4343 23597 81 393 2312 All detected 0 3	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF sensitivity detectors $[deg^2]$ 30 min 10 min 1 min 30 min 10 min 1 min $\Lambda 10^{00\%}$ 10 min 1 min 30 min 10 min 1 min 1 min $\Lambda 10^{00\%}$ 10 1 5 0 0 0 [deg^2] 30 min 10 min 1 min $\Lambda 10^{00\%}$ 10 39 113 2 8 20 $\Lambda 10^{00\%}$ 10 10 1 min 1 min $\Lambda 10^{00}$ 85 293 819 10 34 10 $\Lambda 10^{00}$ 0 0	$\Delta\Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF sensitivity detectors $[deg^2]$ 30 min 10 min 1 min 10 min 1 min 3 0 min 0 0 0	$\Delta \Omega_{90\%}$ All orientation BNSs BNSs with $\Theta_v < 15^\circ$ HF sensitivity detectors HF sensitivity detectors $[dg2^2]$ 30 min 10 min 1 min 30 min 10 min 1 min 0

Full (HFLF crvo) sensitivity detectors

	10	0	1	8	0	0	0
2L 15 km misaligned	100	20	54	169	2	7	26
	1000	194	565	1399	23	73	199
	All detected	2172	9598	39499	198	863	3432

2L 15 km misaligned	100	0	0	0	0	0	0
	1000	0	0	7	0	0	3
	All detected	0	7	743	0	1	69

1 26

dramatic impact on the possibility of detecting precursor and probe prompt/early counterpart \implies miss the info on GRB engine, jet launch, kilonova ejecta

• joint GW-GRB detections decrease by 40% (10km triangle) or 30% (2L-15km)

• HF-only has a significantly smaller reach in distance

- for BNS: from $z\simeq 4$ to $z\simeq 4$ (triangle 10km) or from $z\simeq 6$ to $z\simeq 3$ (2L-15km) misses the peak of the star formation rate

- for PBH: impossible to identify them on the basis of z>30

Configuration	$N_{\rm det}(z > 10) [1/{\rm yr}]$	$N_{\rm det}(z>30)[1/{\rm yr}]$	$f_{\rm PBH}^{\rm constrained} \left[\times 10^{-5} \right]$
Δ -10 km	1140.01	76.81	2.61
Δ -15km	1763.87	260.65	1.42
$2L-15km-0^{\circ}$	1596.61	238.16	1.48
$2L-15km-45^{\circ}$	1650.87	220.86	1.54
2L-20km-0°	1983.97	433.82	1.10
$2L-20km-45^{\circ}$	2080.13	415.80	1.12

Configuration	$N_{\rm det}(z > 10) [1/{\rm yr}]$	$N_{\rm det}(z > 30) [1/{\rm yr}]$	$f_{\rm PBH}^{\rm constrained} \left[\times 10^{-5} \right]$
Δ -10km-HF	15.47	0.00	-
Δ -15km-HF	84.91	0.00	-
$2L-15$ km- 0° -HF	75.08	0.00	-
2L-15km-45°-HF	69.48	0.00	-
$2L-20km-0^{\circ}-HF$	177.84	0.00	-
$2L-20$ km- 45° -HF	169.81	0.00	-

- IMBH: reduction by a factor ~ 5 in comoving volume explored

Summary

1. All the triangular and 2L geometries that we have investigated can be the baseline for a superb 3G detector, that will allow us to improve by orders of magnitudes compared to 2G detectors, and allow us to penetrate deeply into unknown territories.

2a. The $2L-15km-45^{\circ}$ configuration in general offers better scientific return with respect to the 10 km triangle, improving on most figures of merits and scientific cases, by factors typically of order 2-3 on the errors of the relevant parameters.

2b. The 2L-15km-45° configuration has a scientific output very similar to that of the 15 km triangle

3. A single L-shaped detector is not a viable alternative, independently of arm length. If a single site solution should be preferred for ET, the detector must necessarily have the triangular geometry. 4. The low-frequency sensitivity is crucial for exploiting the full scientific potential of ET. In the HF-only configuration, independently of the geometry chosen, several crucial scientific targets of the science case would be lost or significantly diminished.

5. There are some very interesting targets of the Science Case that depend only on the HF sensitivity, and that could be fully reached with an HF-only instrument.

6. For several important aspects of the Science Case, the 2L with 15 km arms at 45°, already in the HF-only configuration, is comparable the 10 km triangle in a full HFLF-cryo configuration.

Inputs for further studies

- The 2L-15km-45° appears to give a better possibility of going through staging:
 - commission first HF (already important results will be obtained)
 - move toward full HFLF-cryo sensitivity, maybe through intermediate
 HFLF-room sensitivity ⇒ input to the ISB
- start a detailed analysis of the costs of different configurations

bkup slides

amplitude spectral density (ASD)

 full HFLF cryo, or HF instrument only sensitivity curves provided by the ISB the HFLF cryo curve used updates the ET-D curve. note: actual curves still evolving

horizon distance for equal mass binaries

horizon distances

relative differences in horizon, wrt the full (HFLF-cryo) 10km triangle

multipole decomposition of the stochastic background

astrophysical signatures in stochastic bkgd

signatures inprinted in deviations from f^{2/3}

The role of the Null Stream

• some qualifications on the use of the null stream:

coherent inference with the three interferometers already uses all the information. The null stream cannot be used to further lower the SNR detection threshold (it is just a change of basis)

the issue can actually be more complicated since the detection threshold depends on the FAR, the SNR is only a proxy.

- having 3 ifos should allow to lower the FAR, compared to 2L
- on the other hand, the ifos are colocated: glitches in different ifos can then have a common cause and similar morphology, and evade the null stream veto

- null stream removes the non-Gaussian component of the background However, the current non-Gaussian background in LIGO-Virgo is small.
 ET might have a different non-Gaussian background, but there is no way to know its contribution before ET is operational
- null stream only relevant when all three interferometers are up (if we assume independent duty cycle of 85%, this means 60% of the time)

the (established) virtues of the null stream

 estimation of the noise, unbiased by the confusion noise from unresolved GW signals

it assumes that noise are incoherent among detectors. Then,

 $d_{null} = d_1 + d_2 + d_3 \implies S_{n,i} = \langle d_{null}, d_i^* \rangle$

caveat:

there can be coherent noise: eg lightning, magnetic noise, seismic gravity fluctuations (however, the problem is possibly mitigated by witness sensors)

benefits of an unbaised noise estimate:

1. stochastic backgrounds

caveat: the dominant error might come from imperfect subtraction of resolvable astrophysical signals

2. for CBC, biased estimate of the noise produces loss of matched filtering SNR

increase the horizon by (2-5)%

Note however that 2L15km increase the horizon, with respect to Δ -10km, by (50-150)%

horizon distance for equal mass binaries

horizon distances

relative differences in horizon, wrt the full (HFLF-cryo) 10km triangle

3. Mitigation of transient detector glitches

glitches appear as non-Gaussian outliers in the null stream. It is possible to eliminate them and end up with a clean Gaussian background, in the limit where the 3 ET components have exactly the same sensitivity

⇒ benefit for high-mass BBH and unmodeled bursts

4. Improvement in calibration errors

my take on this part: null stream very valuable if we have a triangle, but there are many caveats, and is not a golden bullet