

ISB - Active Noise Mitigation: Effects of Environmental Noises on ET Performance

Jan Harms

Gran Sasso Science Institute INFN - National Laboratories of Gran Sasso

G S Interest of ISB in Site Quality

- Requirements for environmental noise mitigation (isolation, cancellation, avoiding/eliminating sources)
- Noise from interferometer sensing and control
- Maintaining, losing, regaining interferometer lock (duty cycle)
- Infrastructure limitations

S G Magnetic Fluctuations S

Globally coherent disturbances and noise

Magnetic disturbances can appear coherently in a global detector network.

Schumann resonances 10-2 Poland Colorado Patagonia Hanford Livingston KAGRA -Villa Cristina Magnetic Spectrum [nT/ / Hz] Virgo 10 10 15 20 25 30 Frequency [Hz]

LIGO-Hanford magnetometer ថ្លី 10² 944696230 944696231 944696232 944696233 944696234 944696230 944696231 Time [s] Loudest: GPS=944696231.690, f=72.091 Hz, snr=75.571 Loudest: GPS=944696231.588, f=12.256 Hz, snr=121.365 LIGO-Livingston magnetometer ត្ត 10

Lightning transient appearing in all detectors

944696231 944696232 944696233 944696234 944696230 Time [s] Loudest: GPS=944696231.660. f=7.022 Hz. snr=9.035

944696231

Loudest: GPS=944696231.677, f=28.981 Hz, snr=8.807

944696230

944696233

94469623

Time [s]

944696232

SPB; J Harms for the ISB ANM division

Magnetic Noise: Potential ET-LF Show Stopper

Schumann resonances as well as a large number of EM-provoked transients would be visible in ET-LF without improved payload design.

Magnetic shielding, noise subtraction, and removing coil actuators from last two suspension stages are proposed mitigation techniques.

S

G

Newtonian-noise Transients

Realizing ET-LF at Sardinia without NNC would mean that **of order one million detectable glitches would be produced per year by NN**. Study is required to estimate the number more precisely and the SNR distribution.

The distribution is calculated using 1min time windows. The distribution maintains its peak-SNR value and **becomes broader if shorter time windows are used**.

While the SNR values need to be recalculated using latest data, the **shape of the distribution is typical**.

G

More about Glitches

Each glitch needs to be mitigated in ET since GW signals are observed continuously. Each glitch leaves a significant residual.

"While our results do not disprove the presence of spin-precession in GW200129, we argue that any such inference is contingent upon the statistical and systematic uncertainty of the glitch mitigation."

SPB; J Harms for the ISB ANM division

Seismic Background: KAGRA, LNGS

Blue: excess noise, which is probably ground tilt produced by pressure fluctuations [1], but generation mechanism not yet well understood for KAGRA/LNGS Green: natural low underground seismic noise Red: excess noise from machines (also present at KAGRA above 10Hz)

S

G

G S ET Newtonian Noise Predictions

According to current NN estimates without NNC, Sardinia is compatible with ET-LF @ 10K, while EMR is compatible with ET-LF @ 290K.

The question is, what can we achieve with NNC?

G S The Optimal Design of a NNC System

- 1. Is there an optimal type of sensor or an optimal combination of different types of sensors?
- 2. What are the optimal sensor locations?
- 3. What is the optimal filter?

G S Types of Seismic Sensors

Adv: Virgo experience when ET starts operating, 3-axis information Disadv: Expensive installation, difficult to fix broken sensors, state-ofthe-art: one istrument per borehole Adv: Probably easier to deploy and maintain, larger number of readout points. Disadv: Lower correlation with NN [2], single axis

Fiber-optic sensors

Possible add-on

Distributed sensing system

Tiltmeters

Adv: Maybe helpful in combination with DAS and/or seismometers Disadv: Can only be deployed at the surface or in caverns

G S

S

Searching for a Miracle Sensor (Combination)

Wave type	[ξ _x ,ξ _y ,ξ _z]	[ξ _{x,x} ,ξ _{y,y} ,ξ _{z,z}]	[ξ _{z,x} ,ξ _{z,y}]	Gravity, F_x (flat surface, homogeneous medium, small cavern)	Note θ, φ: prop. direction
Rayleigh (surf)	[<mark>cos(φ)</mark> , sin(φ), const1]	[cos²(φ), sin²(φ), const2]	[<mark>cos(φ)</mark> , sin(φ)]	cos(φ)	$\xi_{z,x}$ optimal since vertical surface displacement is typically dominated by Rayleigh waves
P-wave (ug)	$[\frac{\sin(\theta)\cos(\phi)}{\sin(\theta)}, \\ \sin(\theta)\sin(\phi), \\ \cos(\theta)]$	[sin2(θ)cos2(φ),sin2(θ)sin2(φ),cos2(θ)]	[sin(θ)cos(θ)cos(φ), sin(θ)cos(θ)sin(φ)]	sin(θ)cos(φ)	Generally, the body-wave field is a mix of P and S polarization
SH-wave (ug)	$[-sin(\theta)sin(\phi), sin(\theta)cos(\phi), 0]$	$[-\sin^2(\theta)\sin(\phi)\cos(\phi), \sin^2(\theta)\sin(\phi)\cos(\phi), 0]$	[0,0]	-sin(θ)sin(φ)	Generally, the body-wave field is a mix of P and S polarization
SV-wave (ug)	$[\frac{\cos(\theta)\cos(\phi)}{\cos(\theta)}, \\ \cos(\theta)\sin(\phi), \\ -\sin(\theta)]$	[sin(θ)cos(θ)cos ² (ϕ), sin(θ)cos(θ)sin ² (ϕ), -sin(θ)cos(θ)]	[-sin²(θ)cos(φ), -sin²(θ)sin(φ)]	cos(θ)cos(φ)	Generally, the body-wave field is a mix of P and S polarization

For generic rotation measurements (not just tilt), see [3]

S G NNC with non-ideal Arrays S

Optimized for single frequency, homogeneous ground, isotropic seismic field

Body-wave analysis

S Noise Reduction

NNC gets more challenging if the noise needs to be mitigated over a broader band.

Example:

NNC system with 12 sensors per test mass (144 in total) cannot guarantee factor 2 at any frequency assuming typical sensor misplacements from optimal positions of $<0.1\lambda$.

G

Detector Control: Climbing up the Hill

S

G

The goal of a control can be formulated in terms of a **cost/value function**, which is to be minimized/maximized.

Generally, the **sequence of outputs** of a controller describes a **path on the cost function**.

There is an **optimal controller**, which represents a gradient descent/ascent [4].

The cost function depends on the plant model, on control inputs, and on a **target freely chosen by a human being**.

If the control is feedback, the **plant model may include the controller**.

G S S I

Optimal Newtonian-noise Cancellation

The cost function is the **detector noise PSD**.

The control is **feedforward**, and so the controller plays no role in the plant model.

The **plant is to a very good approximation linear**: seismic-wave propagation, gravitational coupling to test mass, detector response.

It follows that the cost function is quadratic.

It follows that the gradient descent, i.e., the optimal control, is described by a **linear controller**.

The best Newtonian-noise cancellation filter is the Wiener filter.

GSIREALLY Really nothing better than Wiener Filters?

You could consider different goals of the noise cancellation (instead of PSD reduction).

For example, what about **time-variant cost functions**? Plant is time-variant, e.g., noise PSDs and correlations between sensors change with time.

Kalman filters and time-variant machine-learning methods can potentially cope better with time-variant plants.

One of my slides in 2009 (GWADW in Ft Lauderdale)

The 99% Commitment

University of Minnesota

We will subtract 99% of the GGN in third-generation detectors.

- We need to calibrate the strainmeters / dilatometers / seismometers with higher accuracy / precision than 99% (includes dependence on temperature, pressure, ...)
- 2. We need to measure the seismic field with higher accuracy / precision than 99% (STS-2 and T240 cannot)
- 3. We need to understand the seismic signal better than 99% (analyze different modes)
- 4. We need to model GGN with input from seismic measurements better than 99%

14 years and 41 Newtonian-noise publications later (apart from the fact that only half of the 4 items on the slide turned out to be correct):

Maybe we will be able to reduce seismic Newtonian noise by a factor 2.

Conclusions

The ET infrastructure will have a several decades-long lifetime, and **sensitivity limitations caused by infrastructure** (set by dimension, geometry, quality) are extremely important to consider in detector planning.

Magnetic noise deserves maximal attention. We don't have any analysis so far to estimate the effectiveness of proposed mitigation techniques. Understanding of magnetic coupling in Virgo/LIGO is incomplete and we cannot promise fail-safe solutions to ET-LF magnetic noise.

There is **no known «solution» to NN**. It will be a major challenge and significant financial and R&D commitment to achieve the modest NN reduction predicted in simulations.

References

[1] On reduction of long-period horizontal seismic noise using local barometric

pressure

https://doi.org/10.1111/j.1365-246X.2007.03553.x

[2] Terrestrial Gravity Fluctuations

https://link.springer.com/article/10.1007/s41114-019-0022-2

[3] Six-component seismology: Joint processing of translational and rotational groundmotion

https://www.research-collection.ethz.ch/handle/20.500.11850/296927

[4] Optimal and Learning Control for Autonomous Robots

https://doi.org/10.48550/arXiv.1708.09342