E-TEST in EMR: Hydrogeophysical characterization

Joost Hase, Yannick Forth Andreas Kemna, Frédéric Nguyen

About us

Joost Hase, PhD Student – University of Bonn

- Geoelectric surveys, SIP laboratory measurements
- Yannick Forth, PhD Student University of Liège
- Geoelectric surveys

Objective:

- Geologic structures and lithology
- Hydrogeophysical characteristics

Electrical Resistivity Tomography (ERT)

- Current injected using two electrodes
- Electric voltage measured two different electrodes
- Measured voltage depends on subsurface resistivity ruled by lithology, porosity and water content
- Reconstruction through tomography

Induced polarization (IP)

- Chargeability of subsurface from decay curves
- IP in frequency domain able to determine porosity
 - Solves issue of ERT ambiguity of porosity vs water content

SIP and petrophysical measurements

SIP and petrophysical measurements on 30+ samples from:

- Cottessen Borehole
- Surface outcrops

to improve hydrogeophysical and litholigical characterization.

mean relaxation time $\tau_m = 0.0272$ [s]

Survey site Beusdael

	Туре	Campaign
Purple	N-S ERT/IP profile	March 22
Light- blue	NE-SW ERT/IP profile	March 22
Green	N-S ERT/IP profile	June 22
Red	W-E ERT/IP profile	June 22
Yellow	N-S ERT/IP profie	June 22
Orange	Azimuth- Survey (Midpoint)	June 22

E-TEST Einstein Telescope EMR Site & Technology European Regional Development Fund

Field work

Reproduction of previous geoelectric measurements

Purple N-S ERT/IP profile, March 22

Light-blue N-S ERT/IP profile, March 22

Processing and inversion

- Processing: Filtering of low-quality data points, error quantification
- Inversion: Fitting of a subsurface model to the field measurements
- To constrain the inversion one has to introduce prior information $\rightarrow \textbf{smoothing}$
- The smoothing level is a hyperparameter and has to be chosen carefully

Validation of suspected fault location

Green N-S ERT/IP profile, June 22 (complete)

Validation of suspected fault location

Yellow N-S ERT/IP profile, June 22

Red W-E ERT/IP profile, June 22

Azimuth survey design

- Increasing distance between current electrodes causes deeper penetration depth of electric field
- Rotation around common midpoint yields information on large scale anisotropy

Azimuth survey

3D Deep ERT

What are we missing?

Information at ET depth ~300 m

IRIS Fullwaver System

- Independent receiver spread across 800 m²
- DC injection up to 3 A
- \rightarrow Large dipoles injecting to large depth

Deep ERT – Set up

14

Source: IRIS Instruments

Deep ERT – Example data

• Injected current signal

• IP decay curves

• Recorded Voltage signal

Deep ERT – Example Hombourg

- Bedrock and dipping of layers observed
- No faults detected

Deep ERT – Example Hombourg

Ν

0

earleger measurements European Regional Development Fund

Challenges with deep ERT surveys

• Resolution / sensitivity is dependent on remote electrode position, receivers

geometry and geology > requires adequate methodology to quantify it

- Long and time-consuming permitting process compared to "standard" survey
- High coordinative effort during conduction
- Ensuring survey safety is demanding

Conclusion

• Resistivity is an efficient proxy to map the Famenian, and other lithologies in

the area

- Fault suspected at Beusdael within the BVD and characterized near surface
- Deep ERT survey for large scale deep electric characterization
- Cross-borehole ERT would provide higher resolution close to fault

E-TEST is co-funded by the Regions:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

E-TEST is also co-funded by the own-fundings of all Partners:

