Science with the Einstein Telescope: a comparison of different designs

Michele Maggiore

UNIVERSITÉ

DE GENĖVE
FACULTÉ DES SCIENCE
Département de physique théorique

XIII ET Symposium, Cagliari May 8-12, 2023

the 'CoBA-Science'

team, coordinated by

 M.Branchesi and MM
Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi, ${ }^{1,2}$ Michele Maggiore, ${ }^{3,4}$ David Alonso, ${ }^{5}$ Charles Badger, ${ }^{6}$ Biswajit Banerjee, ${ }^{1,2}$ Freija Beirnaert, ${ }^{7}$ Swetha
Bhagwat, ${ }^{8,9}$ Guillaume Boileau, ${ }^{10,11}$ Ssohrab Borhanian, ${ }^{12}$ Daniel
David Brown, ${ }^{13}$ Man Leong Chan, ${ }^{14}$ Giulia Cusin, ${ }^{15,3,4}$ Stefan L. Danilishin, ${ }^{16,17}$ Jerome Degallaix, ${ }^{18}$ Valerio De Luca, ${ }^{19}$ Arnab Dhani, ${ }^{20}$ Tim Dietrich, ${ }^{21,22}$ Ulyana Dupletsa, ${ }^{1,2}$ Stefano Foffa, ${ }^{3,4}$
Gabriele Franciolini, ${ }^{8}$ Andreas Freise, ${ }^{23,16}$ Gianluca Gemme, ${ }^{24}$ Boris
Goncharov, ${ }^{1,2}$ Archisman Ghosh, ${ }^{7}$ Francesca Gulminelli, ${ }^{25}$ Ish
Gupta, ${ }^{20}$ Pawan Kumar Gupta, ${ }^{16,26}$ Jan Harms, ${ }^{1,2}$ Nandini Hazra, ${ }^{1,2,27}$ Stefan Hild, ${ }^{16,17}$ Tanja Hinderer, ${ }^{28}$ Ik Siong Heng, ${ }^{29}$ Francesco lacovelli, ${ }^{3,4}$ Justin Janquart, ${ }^{16,26}$ Kamiel Janssens, ${ }^{10,11}$ Alexander C. Jenkins, ${ }^{30}$ Chinmay Kalaghatgi, ${ }^{16,26,31}$ Xhesika Koroveshi, ${ }^{32,33}$ Tjonnie G. F. Li, ${ }^{34,35}$ Yufeng Li, ${ }^{36}$ Eleonora Loffredo, ${ }^{1,2}$ Elisa Maggio, ${ }^{22}$ Michele Mancarella, ${ }^{3,4,37,38}$ Michela Mapelli, ${ }^{39,40,41}$ Katarina Martinovic, ${ }^{6}$ Andrea Maselli, ${ }^{1,2}$ Patrick Meyers, ${ }^{42}$ Andrew L. Miller, ${ }^{43,16,26}$ Chiranjib Mondal, ${ }^{25}$ Niccolò Muttoni, ${ }^{3,4}$ Harsh Narola, ${ }^{16,26}$ Micaela Oertel, ${ }^{44}$ Gor Oganesyan, ${ }^{1,2}$ Costantino Pacilio, ${ }^{8,37,38}$ Cristiano Palomba, ${ }^{45}$ Paolo Pani, ${ }^{8}$ Antonio Pasqualetti, ${ }^{46}$ Albino Perego, ${ }^{47,48}$ Carole Périgois, ${ }^{39,40,41}$ Mauro Pieroni, ${ }^{49,50}$ Ornella Juliana Piccinni, ${ }^{51}$ Anna Puecher, ${ }^{16,26}$ Paola Puppo, ${ }^{45}$ Angelo Ricciardone, ${ }^{52,39,40}$ Antonio Riotto, ${ }^{3,4}$ Samuele Ronchini, ${ }^{1,2}$ Mairi Sakellariadou, ${ }^{6}$ Anuradha Samajdar, ${ }^{21}$ Filippo Santoliquido, ${ }^{39,40,41}$ B.S. Sathyaprakash, ${ }^{20,53,54}$ Jessica
Steinlechner, ${ }^{16,17}$ Sebastian Steinlechner, ${ }^{16,17}$ Andrei Utina, ${ }^{16,17}$
Chris Van Den Broeck, ${ }^{16,26}$ and Teng Zhang ${ }^{9,17}$

Motivations

The reference ET configuration:

- triangle, 10km arms
- 3 nested detectors in xylophone configuration (HF+LF cryo)

We want to evaluate the effect on the Science Case of

- changes in geometry: triangle vs 2 L , and different arm-lengths
- role of low-frequency instrument

why now and not 10 yr ago?

when the basic layout of ET was first proposed (<2011) and until very recently, there were not even the elements for performing such a study

- only after GWTC-3 (+ recent theoretical population modeling) we have enough info on the coalescing binaries (redshift, mass distributions,...), so to optimize the ET design
- many of the most interesting specific Sciences Cases for 3G detectors have been developed only in recent years, in the flurry of activities after the first detection
- thanks to the OSB, we now have the large ET theoretical community needed to perform such a study (75 people involved)
now this study becomes possible and, therefore, mandatory

configurations studied

geometries:

- triangle, 10 km arms (the current baseline ET geometry)
- 2L, 15km arms, parallel
- $2 \mathrm{~L}, 15 \mathrm{~km}$ arms at 45°
- triangle, 15 km arms
- 2L, 20km arms, parallel
- $2 \mathrm{~L}, 20 \mathrm{~km}$ arms at 45°

NB. 'parallel' with respect to the local North, not the great circle connecting them.
2.5° offset

what is a ‘fair comparison' in $\Delta \mathrm{vs}$. 2 L is a delicate point

compare configurations with comparable costs?

detailed cost analysis not currently available, and well beyond the scope of this work
total linear arm length is not a good proxy for the cost: $\Delta 10=30 \mathrm{~km}, 2 \mathrm{~L} 15=60 \mathrm{~km}$, but the two largest items of the cost are excavation and the vacuum pipes

- $\Delta 10$ and 2 L15 have the same vacuum length: ('ETRAC' report)

$$
\Delta 10: 10 \mathrm{~km} \times 3 \mathrm{arms} \times 4 \text { tubes }=120 \mathrm{~km} \quad 2 \mathrm{~L} 15: 15 \mathrm{~km} \times 4 \mathrm{arms} \times 2 \text { tubes }=120 \mathrm{~km}
$$

- for triangle, larger tunnel diameter ($\mathrm{d}=8 \mathrm{~m}$ vs 6.5 m) $\Rightarrow \Delta 10$ and 2 L 15 have similar excavation volumes (but excavation costs rise more as d rather than d^{2})
- costs and maintenance of 1 site and 6 instruments vs 2 sites and 4 instruments
furthermore two-site and one-site configurations might have different financial architectures \Longrightarrow our study is just a piece of the puzzle

structure of the work

Contents

1 Introduction
1
2 Detector geometries and sensitivity curves 4
3 Coalescence of compact binaries
3.1 Binary Black Holes
3.1.1 Comparison between geometries
3.1.2 Effects of a change in the ASD
3.1.3 Golden events
3.2 Binary Neutron Stars
3.2.1 Comparison between geometries
3.2.2 Effects of a change in the ASD
3.2.3 Golden events
3.2.4 Dependence on the population model
3.3 ET in a network of 3 G detectors

4 Multi-messenger astrophysics
4.1 BNS sky-localization and pre-merger alerts
4.2 Gamma-ray bursts: joint GW and high-energy detections
4.2.1 Prompt emission
4.2.2 Afterglow: survey and pointing modes
4.3 Kilonovae: joint GW and optical detections

Stochastic backgrounds
$\begin{array}{ll}\text { 5.1 } & \text { Sensitivity to isotr } \\ \text { 5.2 } & \text { Angular sensitivity }\end{array}$
5.3 Astrophysical backgrounds
5.4 Impact of correlated magnetic, seismic and Newtonian noise
5.4.1 Seismic and Newtonian Noise
5.4.2 Magnetic noise

Impacts of detector designs on specific science cases
6.1 Physics near the BH horizon
6.1.1 Testing the GR predictions for space-time dynamics near the horizon 6.1.2 Searching for echoes and near-horizon structures
6.1.3 Constraining tidal effects and multipolar structure
6.2 Nuclear physics
6.2.1 Radius estimation from Fisher-matrix computation
6.2.2 Full parameter estimation results
6.2.3 Connected uncertainty of nuclear-physics parameter 6.2.4 Postmerger detectability
$\begin{array}{ll}\text { 6.2.5 } & \text { Conclusions: nuclear physics with ET }\end{array}$
6.3 Population studies
6.3.1 Merger rate reconstruction

6.3.2 Constraints on PBHs from high-redshift mergers

 6.3.3 Other PBH signatures6.4 Cosmology
6.4.1 Hubble parameter and dark energy from joint GW/EM detections 6.4.2 Hubble parameter and dark energy from BNS tidal deformability 6.4.3 Hubble parameter from high-mass ratio events
6.5 Cosmological stochastic backgrounds 6.5.1 Cosmic Strings
6.5.2 First-order phase transition
6.5.3 Source separation
6.6 Continuous waves
6.6.1 CWs from spinning neutron stars 6.6.2 Transient CWs
6.6.3 Search for dark matter with CWs
6.6.4 Conclusions

role of the null stream in the triangle-2L comparison
7 The role of the null stream in the triangle-2L comparison 127
8 Summary 130
8.1 Comparison of different geometries 131
8.1.1 Comparison between 15 km 2 L and 10 km triangle 131
135
8.1.2 Comparison between 15 km 2 L and 15 km triangle 135
8.1.3 A single L-shaped detector136
8.1.4 Further aspects of the triangle-2L 139
8.3 Conclusions 143
A Basic formalism for stochastic backgrounds 145
B Sensitivity to stochastic backgrounds of misaligned 2 L configurations 148
C Tables of figures of merit for BBH s and BNSs 149
D Correlation between parameters for typical events 154

Independently of the comparison between geometries, it is currently the most detailed study of the science that can be done with ET
presented first at ET Collaboration meeting, EGO, Nov. 2022 undergone a detailed ET internal review now posted on the arxiv (submitted to JCAP)

coalescence of compact binaries (BBH,BNS)

we study detection rates, range and distribution in redshift, accuracy in the reconstruction of the source parameters
very general metrics that already provide a first solid understanding
first step (lasted several months):
development and comparison of Fisher codes

- GWBENCH (Borhanian 2021, Borhanian and Sathyaprakash 2022)
- GWFISH
- GWFAST
- TiDoFM (Li, Heng, Chan et al 2022)
-

(Pieroni, Ricciardone, Barausse 2022)
other technical details:

- state-of-the art population models (Santoliquido et al 2021)
- state-of-the art waveform models
- IMRPhenomXPHM for BBHs (includes precessing spins and higher-order modes)
- IMRPhenomD_NRTidalv2 for BNS (includes tidal effects)
- inference on a large parameter space

$$
\left\{\mathcal{M}_{c}, \eta, d_{L}, \theta, \phi, \iota, \psi, t_{c}, \Phi_{c}, \chi_{1, x}, \chi_{2, x}, \chi_{1, y}, \chi_{2, y}, \chi_{1, z}, \chi_{2, z}, \Lambda_{1}, \Lambda_{2}\right\}
$$

BBH

- $\Delta 10 \mathrm{~km}$ HFLF cryo - $2 \mathrm{~L} 45^{\circ} 15 \mathrm{~km}$ HFLF cryo —— $2 \mathrm{~L} 0^{\circ} 15 \mathrm{~km}$ HFLF cryo - $\Delta 15 \mathrm{~km}$ HFLF cryo - 2L $45^{\circ} 20 \mathrm{~km}$ HFLF cryo - $2 \mathrm{~L} 0^{\circ} 20 \mathrm{~km}$ HFLF cryo

Configuration	$\mathrm{SNR} \geq 8$	$\mathrm{SNR} \geq 12$	$\mathrm{SNR} \geq 50$	$\mathrm{SNR} \geq 100$	$\mathrm{SNR} \geq 200$
Δ-10km-HFLF-Cryo	103528	87568	13674	2298	282
Δ-15km-HFLF-Cryo	111231	101308	26092	5730	759
2L-15km-45ㅇ-HFLF-Cryo	107661	97205	23491	4933	644
2L-20km-45ㅇHFLF-Cryo	110698	103773	34009	8828	1267
2L-15km-0-HFLF-Cryo	104935	94015	24088	5143	642
2L-20km-0-HFLF-Cryo	106417	98274	32915	8551	1246
LVK-O5	8603	2861	47	4	2

Configuration	$\Delta d_{L} / d_{L} \leq 0.1$	$\Delta d_{L} / d_{L} \leq 0.01$	$\Delta \Omega_{90 \%} \leq 50 \mathrm{deg}^{2}$	$\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2}$
Δ-10km-HFLF-Cryo	10969	28	6064	914
Δ-15km-HFLF-Cryo	17321	77	10470	2273
2L-15km-45 ${ }^{\circ}$-HFLF-Cryo	22237	202	10304	2124
2L-20km-45 ${ }^{\circ}$-HFLF-Cryo	28801	365	14920	3648
2L-15km-00-HFLF-Cryo	13865	79	3030	374
2L-20km-0-HFLF-Cryo	17008	144	4706	608

LVK-O5	767	1	1607	599

Configuration	$\Delta \mathcal{M}_{c} / \mathcal{M}_{c} \leq 10^{-3}$	$\Delta \mathcal{M}_{c} / \mathcal{M}_{c} \leq 10^{-4}$	$\Delta \chi_{1} \leq 0.05$	$\Delta \chi_{1} \leq 0.01$
Δ-10km-HFLF-Cryo	48922	4549	27877	2811
Δ-15km-HFLF-Cryo	64469	7703	41612	4856
2L-15km-45-HFLF-Cryo	58371	6456	35943	3958
2L-20km-45-HFLF-Cryo	67999	9073	45666	5706
2L-15km-0-HFLF-Cryo	57330	6472	33236	3653
2L-20km-0-HFLF-Cryo	63154	8279	40068	4935

- the baseline 10 km triangle has, by itself, fantastic performances, improving by several orders of magnitudes on 2G detectors
- for BBH, the $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ improves significantly on the 10 km triangle for d_{L} and angular localization, and is slightly better (~ 2) for the other parameters
actually, $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ equal or better even than the 15 km triangle
- 2L with parallel arms quite disfavored, because of a comparatively poor angular localization capability
triangle 10-km well superior to LVK-O5 even in HF-only configuration
(except angular localization)

BBH

for BBH, the $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ} \mathrm{HF}$-only is comparable or better than the 10 km triangle at full sensitivity

Configuration	$\Delta d_{L} / d_{L} \leq 0.1$	$\Delta d_{L} / d_{L} \leq 0.01$	$\Delta \Omega_{90 \%} \leq 50 \mathrm{deg}^{2}$	$\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2}$
Δ-10km-HFLF-Cryo	10969	28	6064	914
Δ-15km-HFLF-Cryo	17321	77	10470	2273
2L-15km-45-HFLF-Cryo	22237	202	10304	2124
2L-20km-45-HFLF-Cryo	28801	365	14920	3648
2L-15km-0-HFLF-Cryo	13865	79	3030	374
2L-20km-0-HFLF-Cryo	17008	144	4706	608
Δ-10km-HF	3919	6	2409	281
Δ-15km-HF	8083	26	5156	817
2L-15km-45-HF	11193	56	5263	835
2L-20km-45-HF	16155	113	8448	1566
2L-15km-0-HF	4111	17	1054	120
2L-20km-0-HF	9693	57	2936	362

it is competitive on other parameters (assuming that glitches can be reliably vetoed)

BBH `golden’ events

the $2 \mathrm{~L}-45^{\circ}$ and $\Delta-15 \mathrm{~km}$ give the best compromise between detecting many of them, up to large redshift, and localizing them.

2L-15km-45 ${ }^{\circ}$, even with HF-only, is comparable to $\Delta-10 \mathrm{~km}$ with full HFLF-cryo sensitivity

- Full populati Detected SNR ≥ 8
- $2 \mathrm{~L} 45^{\circ} 15 \mathrm{~km}$ HFLF cryo $-2 \mathrm{~L} 45^{\circ} 20 \mathrm{~km}$ HFLF cryo $-2 \mathrm{~L} 0^{0} 15 \mathrm{~km}$ HFLF cryo 2L $0^{\circ} 20 \mathrm{~km}$ HFLF cry $\Delta d_{L} / \boldsymbol{d}_{L} \leq 0.05 \quad$ BBH

 - Fulf population $\operatorname{SNR} \geq 8$
- $2 \mathrm{~L} 45^{\circ} 15 \mathrm{~km}$ HFLF cryo Detected SNR $\geq 8-2 \mathrm{~L} 45^{\circ} 20 \mathrm{~km}$ HFLF cryo | - $\Delta 10 \mathrm{~km}$ HFLF cryo - $2 \mathrm{~L} 0^{\circ} 15 \mathrm{~km}$ HFLF cryo |
| :--- |
| $-\Delta 15 \mathrm{~km}$ HFLF cryo $-2 \mathrm{~L} 0^{\circ} 20 \mathrm{~km}$ HFLF cryo | $\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2} \quad$ BBH

BNS

for the full HFLF-cryo configuration, BNSs confirm the basic message from BBHs
the baseline 10km triangle has remarkable performances, improving by orders of magnitude wrt 2G
the $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ improves by a further factor 2-3

2L-15km-0º disfavored

Losing the LF in the 10 km triangle:

LF sensitivity particularly important for BNS (long time in bandwidth)

The $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ improves on the $10-\mathrm{km}$ triangle
but now, $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ - HFonly is sensibly worse than triangle 10km full HFLF-cryo
again, LF especially important for BNS

BNS `golden’ events

ET in a network with 1CE (40 km) or 2CE (40km + 20km)

Configuration	$\Delta d_{L} / d_{L} \leq 0.3$	$\Delta d_{L} / d_{L} \leq 0.1$	$\Delta \Omega_{90 \%} \leq 100 \mathrm{deg}^{2}$	$\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2}$
Δ-10km-HFLF-Cryo+CE-40km	32053	4100	54994	2427
2L-15km-450-HFLF-Cryo + CE-40km	45252	7949	75828	3838
2L-15km-0 ${ }^{\circ}$-HFLF-Cryo + CE-40km	16999	2079	29821	1515
Δ-10km-HFLF-Cryo+2CE	72335	13630	112705	6570
2L-15km-450-HFLF-Cryo+2CE	89877	19129	145272	9841
2L-15km- 0°-HFLF-Cryo+2CE	78798	14909	125640	7592

differences are smaller but still significant, especially with 1 CE
3 Coalescence of compact binaries 9
3.1 Binary Black Holes 11
3.1.1 Comparison between geometries 11
3.1.2 Effects of a change in the ASD 13
3.1.3 Golden events 15
3.2 Binary Neutron Stars 23
3.2.1 Comparison between geometries 23
3.2.2 Effects of a change in the ASD 23
3.2.3 Golden events 24
3.2.4 Dependence on the population model 25
3.3 ET in a network of 3G detectors 34
4 Multi-messenger astrophysics 39
4.1 BNS sky-localization and pre-merger alerts 39
4.2 Gamma-ray bursts: joint GW and high-energy detections 43
4.2.1 Prompt emission 44
4.2.2 Afterglow: survey and pointing modes 45
4.3 Kilonovae: joint GW and optical detections 48
5 Stochastic backgrounds 51
5.1 Sensitivity to isotropic stochastic backgrounds 53
5.2 Angular sensitivity 55
5.3 Astrophysical backgrounds 57
5.4 Impact of correlated magnetic, seismic and Newtonian noise 59
5.4.1 Seismic and Newtonian Noise 60
5.4.2 Magnetic noise 63

Multi-messenger Astrophysics with ET

Key parameters:

- Ability to localize the source
- Accessible Universe in terms of achieved z
- Pre-merger detection and PE

For the MM studies we use an SNR detection threshold of 8
We consider only 2 L misaligned configurations

Full (HFLF cryo) sensitivity detectors

$\Delta \Omega_{90 \%}\left(\mathrm{deg}^{2}\right)$	All orientation BNSs				BNSs with viewing angle $\Theta_{v}<15^{\circ}$			
	$\Delta 10$	$\Delta 15$	2 L 15	2 L 20	$\Delta 10$	$\Delta 15$	2 L 15	2L 20
10	11	27	24	45	0	1	2	5
40	78	215	162	350	8	22	20	33
100	280	764	644	1282	26	74	68	133
1000	2112	5441	7478	13482	272	632	1045	1725

2 L with 15 km misaligned arms

- comparable to 15 km triangle
- better than 10 km triangle

Without low-frequency

Full (HFLF cryo) sensitivity detectors								
$\Delta \Omega_{90 \%}\left(\mathrm{deg}^{2}\right)$	All orientation BNSs				BNSs with viewing angle $\Theta_{v}<15^{\circ}$			
	$\Delta 10$	$\Delta 15$	2L 15	2L 20	$\Delta 10$	$\Delta 15$	2L 15	2L 20
10	11	27	24	45	0	1	2	5
40	78	215	162	350	8	22	20	33
100	280	764	644	1282	26	74	68	133
1000	2112	5441	7478	13482	272	632	1045	1725
	HF sensitivity d				tectors			
$\Delta \Omega_{90 \%}\left(\mathrm{deg}^{2}\right)$	All orientation BNSs				BNSs with viewing angle $\Theta_{v}<15^{\circ}$			
	$\Delta 10$	$\Delta 15$	2L 15	2L 20	$\Delta 10$	$\Delta 15$	2L 15	2L 20
10	0	1	5	5	0	0	2	2
40	4	10	20	47	0	5	6	17
100	14	53	76	144	7	33	35	64
1000	145	548	1662	3378	80	336	672	1302

- significantly smaller number of well-localized events
- decrease of well-localized events more severe for the triangle configurations
- a large fraction of well-localized events already missed at small z
- on-axis events, decrease of well-localized events but in a smaller percentage than events randomly oriented

Pre-merger detections

Full (HFLF cryo) sensitivity detectors							
Configuration	$\Delta \Omega_{90 \%}$	All orientation BNSs			BNSs with $\Theta_{v}<15^{\circ}$		
	[deg^{2}]	30 min	10 min	1 min	30 min	10 min	1 min
$\Delta 10 \mathrm{~km}$	10	0	1	5	0	0	0
	100	10	39	113	2	8	20
	1000	85	293	819	10	34	10
	All detected	905	4343	23597	81	393	2312
$\Delta 15 \mathrm{~km}$	10	1	5	11	0	1	1
	100	41	109	281	6	14	36
	1000	279	806	2007	33	102	295
	All detected	2489	11303	48127	221	1009	4024
2L 15 km misaligned	10	0	1	8	0	0	0
	100	20	54	169	2	7	26
	1000	194	565	1399	23	73	199
	All detected	2172	9598	39499	198	863	3432
2L 20 km misaligned	10	2	4	15	1	1	2
	100	39	118	288	7	19	47
	1000	403	1040	2427	47	128	346
	All detected	4125	17294	56611	363	1588	4377

Critical to detect the prompt/early multiwavelength emission

- to probe the central engine of GRBs, particularly to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (e.g. VHE prompt CTA/ET synergy)
- to probe the structure of the outer subrelativistic ejecta, early UV emission (e.g. ULTRASAT/UVEX/DORADO synergy)

Without low-frequency

HF sensitivity detectors							
Configuration	$\Delta \Omega_{90 \%}$	All orientation BNSs			BNSs with $\Theta_{v}<15^{\circ}$		
	[deg^{2}]	30 min	10 min	1 min	30 min	10 min	1 min
$\Delta 10 \mathrm{~km}$	100	0	0	0	0	0	0
	1000	0	0	4	0	0	1
	All detected	0	3	317	0	0	26
$\Delta 15 \mathrm{~km}$	100	0	0	2	0	0	0
	1000	0	0	10	0	0	4
	All detected	2	8	891	0	0	84
2L 15 km misaligned	100	0	0	0	0	0	0
	1000	0	0	7	0	0	3
	All detected	0	7	743	0	1	69
2L 20 km misaligned	100	0	0	3	0	0	0
	1000	0	0	13	0	0	6
	All detected	2	11	1535	0	1	146

NO localized pre-merger detections!

Detections within $\mathrm{z}=1.5$

stochastic backgrounds

note: alignment angle defined wrt to North at one site: equivalent to 2.5 deg misalignment with angles defined with respect to great circle joining the detectors

correlated Netwonian, seismic and magnetic noise. A threat for the triangle?

impacts stochastic backgrounds searches but possibly also CBC and unmodeled bursts

6 Impacts of detector designs on specific science cases 63
6.1 Physics near the BH horizon 64
6.1.1 Testing the GR predictions for space-time dynamics near the horizon 64 6.1.2 Searching for echoes and near-horizon structures 67 6.1.3 Constraining tidal effects and multipolar structure 69
6.2 Nuclear physics 71
6.2.1 Radius estimation from Fisher-matrix computation 72
6.2.2 Full parameter estimation results $\quad 75$
$\begin{array}{lll}\text { 6.2.3 } & \text { Connected uncertainty of nuclear-physics parameters } & 76\end{array}$
6.2.4 Postmerger detectability 78
6.2.5 Conclusions: nuclear physics with ET 80
$\begin{array}{lll}\text { 6.3 Population studies } & 80\end{array}$
$\begin{array}{lll}\text { 6.3.1 } & \text { Merger rate reconstruction } & 80\end{array}$
6.3.2 \quad Constraints on PBHs from high-redshift mergers 83
6.3.3 Other PBH signatures 86
6.4 Cosmology 89
6.4.1 Hubble parameter and dark energy from joint GW/EM detections 89
6.4.2 Hubble parameter and dark energy from BNS tidal deformability 101
6.4.3 Hubble parameter from high-mass ratio events 104
6.5 Cosmological stochastic backgrounds 108
6.5.1 Cosmic Strings 108
6.5.2 First-order phase transition 109
6.5.3 Source separation 110
6.6 Continuous waves 112
6.6.1 CWs from spinning neutron stars 113
6.6.2 Transient CWs 116
6.6.3 Search for dark matter with CWs 118
6.6.4 Conclusions 121

7 The role of the null stream in the triangle-2L comparison 122
8 Summary 124
$\begin{array}{lll}\text { 8.1 } & \text { Comparison of different geometries } & 125\end{array}$
8.2 The role of the low-frequency sensitivity 131
8.3 Conclusions 135

A Sensitivity to stochastic backgrounds of misaligned 2L configurations 137
B Tables of figures of merit for BBHs and BNSs 139

Impacts on specific science cases

(a selection of the examples worked out)

Physics near BH horizon

SNR $_{\text {GW150914 }}$	HFLF-cryo	HF-only
$\Delta-10 \mathrm{~km}$	141	141
$\Delta-15 \mathrm{~km}$	190	190
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	196	196
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	192	192
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}$	240	240
2L-20 km-45	235	235

Ringdown SNR of GW150914-like event

$$
\frac{\Delta f_{220}}{f_{220}} \sim 0.2 \%\left(\frac{100}{\operatorname{SNR}}\right), \quad \frac{\Delta \tau_{220}}{\tau_{220}} \sim 2 \%\left(\frac{100}{\operatorname{SNR}}\right)
$$

	$N_{\operatorname{det}}(\mathrm{SNR} \geq 12)$	$N_{\operatorname{det}}(\mathrm{SNR} \geq 50)$	$N_{\operatorname{det}}(\mathrm{SNR} \geq 100)$	$\max (\mathrm{SNR})$
LVKI-O5	22	0	0	34
ET				
$\Delta-10 \mathrm{~km}$	5272	41	4	255
$\Delta-15 \mathrm{~km}$	12916	139	15	312
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	11602	109	11	265
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	11277	110	10	323
2L-20 km-0	19081	248	22	309
2L-20 km-45	18695	252	21	376

Ringdown detections per year

ET (+1CE)	$N_{\text {det }}(\mathrm{SNR} \geq 12)$	$N_{\text {det }}($ SNR $\geq 50)$	$N_{\text {det }}($ SNR $\geq 100)$	max(SNR)
Δ-10 km	17690	202	17	296
$\Delta-15 \mathrm{~km}$	24495	335	32	346
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	23202	311	29	304
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	23125	308	30	356
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}$	29278	490	45	343
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	29298	482	42	405
ET (+2CE)				
$\Delta-10 \mathrm{~km}$	22056	290	26	302
$\Delta-15 \mathrm{~km}$	28498	424	40	351
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	27146	408	39	311
2L-15 km-45 ${ }^{\circ}$	27134	396	38	362
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}$	32796	606	54	348
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	33006	593	53	409

Differences remain significant also with 1 or 2 CE

Nuclear Physics

one example:

$2 \mathrm{~L}-15 \mathrm{HF}$-only is as good as full 10 km triangle

Population studies

Merger rate reconstruction

both 10km triangle and
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ reconstruct it correctly, but $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ is better by a factor $2-3$

primordial BHs

Detections at z> 30 are a smoking-gun signature

Configuration	$N_{\operatorname{det}}(z>10)[1 / \mathrm{yr}]$	$N_{\mathrm{det}}(z>30)[1 / \mathrm{yr}]$	$f_{\text {PBH }}^{\text {constrained }}\left[\times 10^{-5}\right]$
$\Delta \mathbf{- 1 0 k m}$	$\mathbf{1 1 4 0 . 0 1}$	$\mathbf{7 6 . 8 1}$	$\mathbf{2 . 6 1}$
$\Delta-15 \mathrm{~km}$	1763.87	260.65	1.42
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	1596.61	238.16	1.48
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	1650.87	220.86	1.54
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}$	1983.97	433.82	1.10
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	2080.13	415.80	1.12

(based on a PBH population model fitted to GWTC-3)

LF crucial: $N(z>30)=0$ otherwise!
significant differences
also in a network with 1CE

Configuration	$N_{\text {det }}(z>10)[1 / \mathrm{yr}]$	$N_{\text {det }}(z>30)[1 / \mathrm{yr}]$	$f_{\mathrm{PBH}}^{\text {constrained }}\left[\times 10^{-5}\right]$
CE40km	1373.48	47.07	3.34
$\Delta-10 \mathrm{~km}+$ CE40km	1940.35	180.08	1.71
$\Delta-15 \mathrm{~km}+$ CE40km	2275.96	372.14	1.19
2L-15km-45 ${ }^{\circ}+$ CE40km	2210.49	332.89	1.26
2L-20km-45 ${ }^{\circ}+$ CE40km	2476.43	522.32	1.00

Cosmology

Joint GW-GRB detections, ET+THESEUS

Configuration	$\Delta H_{0} / H_{0}$	$\Delta \Omega_{M} / \Omega_{M}$
Δ-10km	0.057	0.546
$\Delta-15 \mathrm{~km}$	0.035	0.290
2L-15km-45	0.040	0.370
2L-20km-45	0.029	0.276

Joint GW-kilonova detections, ET+VRO

HFLF cryogenic		
Configuration	$\Delta H_{0} / H_{0}$	$\Delta \Omega_{M} / \Omega_{M}$
$\Delta-10 \mathrm{~km}$	0.009	0.832
$\Delta-15 \mathrm{~km}$	0.007	0.303
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	0.006	0.370
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	0.004	0.243

HF only		
Configuration	$\Delta H_{0} / H_{0}$	$\Delta \Omega_{M} / \Omega_{M}$
$\Delta-10 \mathrm{~km}$	0.065	1.23
$\Delta-15 \mathrm{~km}$	0.057	1.86
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	0.066	1.31
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	0.031	1.22

Note: the bounds becomes stronger using the Planck prior on Ω_{M}

NS source-frame mass (and then z) determined from tidal deformability of NS

Configuration	$\Delta H_{0} / H_{0}$	$\Delta \Omega_{M} / \Omega_{M}$
$\Delta-10 \mathrm{~km}$	9.63×10^{-3}	1.10×10^{-1}
$\Delta-15 \mathrm{~km}$	7.20×10^{-3}	6.62×10^{-2}
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	7.59×10^{-3}	7.47×10^{-2}
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}$	5.90×10^{-3}	5.04×10^{-2}

Summing up....

Comparison between geometries

- for BBH parameter estimation:
- the $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ improves significantly on the 10 km triangle for d_{L} and angular localization, and is slightly better (~ 2) for the other parameters,
- is equal or better even than the 15 km triangle
- in a network with 1 or 2CE the differences are still significant
- for BNS, the effect is even larger

Configuration	$\Delta d_{L} / d_{L} \leq 0.3$	$\Delta d_{L} / d_{L} \leq 0.1$	$\Delta \Omega_{90 \%} \leq 100 \mathrm{deg}^{2}$	$\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2}$
Δ-10km-HFLF-Cryo	748	52	184	8
$\Delta-15 \mathrm{~km}-H F L F-C r y o$	1756	153	479	23
2L-15km-45-HFLF-Cryo	4328	479	559	25
2L-20km-45-HFLF-Cryo	7821	919	1028	43
2L-15km-0-HFLF-Cryo	774	48	293	12
2L-20km-0-HFLF-Cryo	1499	104	565	23

For multi-messenger astronomy:

- $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ better than 10 km triangle (and comparable to 15 km triangle) enabling observation of a larger number of well-localized events up to a larger redshift
- number of short GRBs with an associated GW signal increases by about 30%, and the number of expected kilonovae counterparts increases by a factor of 2
- pre-merger alerts for on-axis events localized within $10^{3} \mathrm{deg}^{2}$ increase by a factor of 2
- for stochastic backgrounds

for the isotropic sensitivity:
2 L at 45° the less good
2L parallel the best below 100 Hz triangle the best above 100 Hz

For angular resolution: 2 L better than triangle

- correlated Newtonian and seismic noise

a potential treath for the triangle
also, correlated magnetic noise and lightening strikes
individual science case typically show an improvement by a factor 2-3 from the 10 km triangle to $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$
- tests of GR:

SNR $_{\text {GW150914 }}$	HFLF-cryo
$\Delta-10 \mathrm{~km}$	141
$\Delta-15 \mathrm{~km}$	190
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	196
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	192

	$N_{\text {det }}(\mathrm{SNR} \geq 12)$	$N_{\text {det }}(\mathrm{SNR} \geq 50)$	$N_{\text {det }}(\mathrm{SNR} \geq 100)$	$\max (\mathrm{SNR})$
LVKI-O5	22	0	0	34
ET				
$\Delta-10 \mathrm{~km}$	5272	41	4	255
$\Delta-15 \mathrm{~km}$	12916	139	15	312
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	11602	109	11	265
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	11277	110	10	323

- nuclear physics: minor differences ($\Delta \mathrm{R}$ from 10.0 m to 6.4 m)
- merger rate reconstruction; improvement by a factor ~ 3
- PBH: improvement by a factor ~ 3 for events at z>30
- cosmology: improvements ~ 1.5 on H_{0}, w_{0}, Ξ_{0}

In general, results for $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ quite comparable to $15-\mathrm{km}$ triangle

The role of the LF instrument

For BNS, catastrophic degradation on sky localization and luminosity distance (LF allows BNS to stay a longtime in the bandwidth)

Configuration	$\Delta d_{L} / d_{L} \leq 0.3$	$\Delta d_{L} / d_{L} \leq 0.1$	$\Delta \Omega_{90 \%} \leq 100 \mathrm{deg}^{2}$	$\Delta \Omega_{90 \%} \leq 10 \mathrm{deg}^{2}$
Δ-10km-HFLF-Cryo	748	52	184	8
Δ-15km-HFLF-Cryo	1756	153	479	23
2L-15km-45 ${ }^{\circ}$-HFLF-Cryo	4328	479	559	25
2L-20km-45 ${ }^{\circ}$-HFLF-Cryo	7821	919	1028	43
2L-15km- 0°-HFLF-Cryo	774	48	293	12
2L-20km-0 ${ }^{\circ}$-HFLF-Cryo	1499	104	565	23
Δ-10km-HF	4	1	4	0
Δ-15km-HF	7	1	11	1
2L-15km-450-HF	126	12	11	0
2L-20km-450-HF	262	22	24	1
2L-15km-0 ${ }^{\circ}$-HF	20	1	11	1
2L-20km-0 ${ }^{\circ}$-HF	28	2	24	1

\Rightarrow no MMO, no standard sirens cosmology

- premerger alerts impossible without the LF instrument
Full (HFLF cryo) sensitivity detectors

Configuration	$\Delta \Omega_{90 \%}$	All orientation BNSs		BNSs with $\Theta_{v}<15^{\circ}$			
	$\left[\mathrm{deg}^{2}\right]$	30 min	10 min	1 min	30 min	10 min	1 min
	10	0	1	5	0	0	0
	100	10	39	113	2	8	20
	1000	85	293	819	10	34	10
	All detected	905	4343	23597	81	393	2312

HF sensitivity detectors							
Configuration	$\Delta \Omega_{90 \%}$	All orientation BNSs		BNSs with $\Theta_{v}<15^{\circ}$			
	$\left[\mathrm{deg}^{2}\right]$	30 min	10 min	1 min	30 min	10 min	1 min
	100	0	0	0	0	0	0
	1000	0	0	4	0	0	1
	All detected	0	3	317	0	0	26

	10	0	1	8	0	0	0
2L 15 km misaligned	100	20	54	169	2	7	26
	1000	194	565	1399	23	73	199
	All detected	2172	9598	39499	198	863	3432

2 L 15 km misaligned	100	0	0	0	0	0	0
	1000	0	0	7	0	0	3
	All detected	0	7	743	0	1	69

dramatic impact on the possibility of detecting precursor and probe prompt/early counterpart \Rightarrow miss the info on GRB engine, jet launch, kilonova ejecta

- joint GW-GRB detections decrease by 40% (10km triangle) or 30% (2L-15km)
- HF-only has a significantly smaller reach in distance

- for BNS: from $\mathrm{z} \simeq 4$ to $\mathrm{z} \simeq 2$ (triangle 10km) or from $\mathrm{z} \simeq 6$ to $\mathrm{z} \simeq 3$ (2L-15km)
$\Delta 10$ misses the peak of the star formation rate
- for PBH: impossible to identify them on the basis of $z>30$

Configuration	$N_{\operatorname{det}}(z>10)[1 / \mathrm{yr}]$	$N_{\operatorname{det}}(z>30)[1 / \mathrm{yr}]$	$f_{\text {PBH }}^{\text {constrained }}\left[\times 10^{-5}\right]$
$\Delta-\mathbf{1 0 k m}$	$\mathbf{1 1 4 0 . 0 1}$	$\mathbf{7 6 . 8 1}$	$\mathbf{2 . 6 1}$
$\Delta-15 \mathrm{~km}$	1763.87	260.65	1.42
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}$	1596.61	238.16	1.48
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$	1650.87	220.86	1.54
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}$	1983.97	433.82	1.10
${\text { 2L-20km- } 45^{\circ}}^{\circ}$	2080.13	415.80	1.12

Configuration	$N_{\operatorname{det}}(z>10)[1 / \mathrm{yr}]$	$N_{\operatorname{det}}(z>30)[1 / \mathrm{yr}]$	$f_{\mathrm{PBH}}^{\text {constrained }}\left[\times 10^{-5}\right]$
$\Delta-10 \mathrm{~km}-\mathrm{HF}$	15.47	0.00	-
$\Delta-15 \mathrm{~km}-\mathrm{HF}$	84.91	0.00	-
$2 \mathrm{~L}-15 \mathrm{~km}-0^{\circ}-\mathrm{HF}$	75.08	0.00	-
$2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}-\mathrm{HF}$	69.48	0.00	-
$2 \mathrm{~L}-20 \mathrm{~km}-0^{\circ}-\mathrm{HF}$	177.84	0.00	-
$2 \mathrm{~L}-20 \mathrm{~km}-45^{\circ}-\mathrm{HF}$	169.81	0.00	-

- IMBH: reduction by a factor ~ 5 in comoving volume explored

Summary

1. All the triangular and $2 L$ geometries that we have investigated can be the baseline for a superb 3G detector, that will allow us to improve by orders of magnitudes compared to $2 G$ detectors, and allow us to penetrate deeply into unknown territories.

2a. The $2 L-15 \mathrm{~km}-45^{\circ}$ configuration in general offers better scientific return with respect to the 10 km triangle, improving on most figures of merits and scientific cases, by factors typically of order 2-3 on the errors of the relevant parameters.

2b. The $2 L-15 \mathrm{~km}-45^{\circ}$ configuration has a scientific output very similar to that of the 15 km triangle
3. A single L-shaped detector is not a viable alternative, independently of arm length. If a single site solution should be preferred for ET, the detector must necessarily have the triangular geometry.
4. The low-frequency sensitivity is crucial for exploiting the full scientific potential of ET. In the HF-only configuration, independently of the geometry chosen, several crucial scientific targets of the science case would be lost or significantly diminished.
5. There are some very interesting targets of the Science Case that depend only on the HF sensitivity, and that could be fully reached with an HF-only instrument.
6. For several important aspects of the Science Case, the $2 L$ with 15 km arms at 45°, already in the HF-only configuration, is comparable the 10 km triangle in a full HFLF-cryo configuration.

Inputs for further studies

- The $2 \mathrm{~L}-15 \mathrm{~km}-45^{\circ}$ appears to give a better possibility of going through staging:
- commission first HF (already important results will be obtained) - move toward full HFLF-cryo sensitivity, maybe through intermediate HFLF-room sensitivity $\quad \Rightarrow$ input to the ISB
- need a detailed analysis of the costs of different configurations
thanks!
bkup slides
amplitude spectral density (ASD)

- full HFLF cryo, or HF instrument only sensitivity curves provided by the ISB
the HFLF cryo curve used updates the ET-D curve.
note: actual curves still evolving

horizon distance for equal mass binaries

horizon distances
relative differences in horizon, wrt the full (HFLF-cryo) 10km triangle

multipole decomposition of the stochastic background

ℓ

astrophysical signatures in stochastic bkgd

signatures inprinted in deviations from $\mathrm{f}^{2 / 3}$

The role of the Null Stream

- some qualifications on the use of the null stream:
coherent inference with the three interferometers already uses all the information.
The null stream cannot be used to further lower the SNR detection threshold (it is just a change of basis)
the issue can actually be more complicated since the detection threshold depends on the FAR, the SNR is only a proxy.
- having 3 ifos should allow to lower the FAR, compared to 2 L
- on the other hand, the ifos are colocated: glitches in different ifos can then have a common cause and similar morphology, and evade the null stream veto
- null stream removes the non-Gaussian component of the background However, the current non-Gaussian background in LIGO-Virgo is small. ET might have a different non-Gaussian background, but there is no way to know its contribution before ET is operational
- null stream only relevant when all three interferometers are up
- if we assume independent duty cycle of 80%, this means 51% of the time
- if we take all 6 instruments with independent duty cycle, becomes 26%

the (established) virtues of the null stream

- estimation of the noise, unbiased by the confusion noise from unresolved GW signals
it assumes that noise are incoherent among detectors. Then,

$$
\mathrm{d}_{\mathrm{null}}=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3} \Rightarrow \mathrm{~S}_{\mathrm{n}, \mathrm{i}}=\left\langle\mathrm{d}_{\mathrm{null}}, \mathrm{~d}_{\mathrm{i}}^{*}\right\rangle
$$

caveat:
there can be coherent noise: eg lightning, magnetic noise, seismic gravity fluctuations (however, the problem is possibly mitigated by witness sensors)
benefits of an unbaised noise estimate:

1. stochastic backgrounds

caveat: the dominant error might come from imperfect subtraction of resolvable astrophysical signals
2. for CBC, biased estimate of the noise produces loss of matched filtering SNR

increase the horizon by (2-5)\%

Note however that 2 L 15 km increase the horizon, with respect to $\Delta-10 \mathrm{~km}$, by (50-150)\%

horizon distance for equal mass binaries

horizon distances
relative differences in horizon, wrt the full (HFLF-cryo) 10km triangle

3. Mitigation of transient detector glitches

glitches appear as non-Gaussian outliers in the null stream. It is possible to eliminate them and end up with a clean Gaussian background, in the limit where the 3 ET components have exactly the same sensitivity
\Rightarrow benefit for high-mass BBH and unmodeled bursts
4. Improvement in calibration errors
my take on this part: null stream very valuable if we have a triangle, but there are many caveats, and is not a golden bullet

