

XIII ET Symposium May 8th 2023

Searches for near-horizon structures and echoes

Elisa Maggio

Max Planck Institute for Gravitational Physics Albert Einstein Institute Potsdam

Motivation

Current electromagnetic and gravitational observations are compatible with the **Kerr hypothesis**. Why do we need further tests?

The evidence for black holes is the observation of dark, compact and massive

objects.

EHT, ApJL **910**, L12 (2021)

Abbott+, PRL 116 n.6 (2016) 061102

GRAVITY, A&A 636, L5 (2020)

Near-horizon structures

New physics can prevent the formation of the horizon:

in quantum-gravity extensions of general relativity (e.g. fuzzballs, gravastars)

Mathur, Fortsch. Phys. 53, 793-827 (2005); Mazur+, PNAS 101, 9545-9550 (2004)

in general relativity with dark matter or exotic fields (e.g. boson stars, wormholes)

Liebling+, LRR 20, 5 (2017); Morris+, Am. J. Phys. 56, 395-412 (1988)

Horizonless compact objects can mimic black holes and quantify the existence of horizons.

Giudice+, JCAP 10 (2010) 001; Cardoso+, LRR 22:4 (2019); EM+, Handbook for GW Astronomy, Springer (2021)

A parametrized classification

We analyze a generic model that deviates from a black hole for its:

- Compactness since the radius of the object is at $r_0 = r_+(1 + \epsilon)$
- Reflectivity
 that differs from the totally absorbing
 black hole case

EM, Pani, Raposo, Handbook for GW Astronomy, Springer (2021)

The ringdown

The ringdown stage is dominated by the **quasi-normal modes** of the remnant which describe the response of the compact object to a perturbation.

$$\frac{d^2\psi}{dz^2} + \left[\omega^2 - V(z)\right]\psi = 0$$

Teukolsky, Press, ApJ 193 (1974) 443-461

Ringdown of horizonless compact objects

Cardoso+, PRL 116, 171101 (2016); EM+, Handbook for GW Astronomy, Springer (2021)

Searches for GW echoes

A tentative evidence for echoes in GWTC-1 data has been reported

Abedi+, PRD 96, 082004 (2017); Conklin+, PRD 98, 044021 (2018); Abedi+, JCAP 11, 010 (2019)

• Independent searches argued that the statistical significance of echoes is consistent with noise

Westerweck+, PRD **97**, 124037 (2018); Nielsen+, PRD **99**, 104012 (2019); Uchikata+, PRD **100**, 062006 (2019); Lo+, PRD **99**, 084052 (2019); Tsang+, PRD **101**, 064012 (2020)

No evidence for echoes in GWTC-2 and GWTC-3 data

Abbott+, PRD 103 (2021) 12, 122002; Abbott+, arXiv:2112.06861 (2021)

Prospects with next-generation detectors

In the frequency domain, **low-frequency resonances** are excited at the quasinormal modes of the horizonless compact object.

- ullet Models with ${\cal R}pprox 1$ can be detected or ruled out by aLIGO/Virgo
- ET/CE can detect models with generic reflectivities

Testa, Pani, PRD 98 (2018) 4, 044018

Prospects with next-generation detectors

With a Fisher analysis we can assess the **detectability of the reflectivity** of compact objects as a function of the signal-to-noise ratio in the ringdown.

EM, Testa, Bhagwat, Pani, PRD 100, 064056 (2019)

Excluding or detecting echoes for models with $|\mathcal{R}|^2 < 1$ requires:

$$SNR_{ringdown} \gtrsim 100$$

which will be achieved by ET/CE.

Science with ET: a comparison of designs

With a Fisher analysis we derived the fractional percentage **errors on the reflectivity of compact objects** for different ET configurations.

	$\sigma_{\mathcal{R}}/\mathcal{R} \; [\%]$		
	$\mathcal{R} = 0.01$	$\mathcal{R} = 0.5$	$\mathcal{R} = 0.99$
Δ -10 km	422	7	0.06
\parallel Δ -15 km \parallel	308	5	0.04
2L-15 km	326	5	0.04
2L-20 km	265	4	0.03

The accuracy on the reflectivity is affected by a factor of ~2 between the 10 km and 20 km designs due to the arm length configurations.

Branchesi+, EM, Pacilio, Pani, arXiv:2303.15923 (2023)

Conclusions and future prospects

- Third-generation detectors will allow us to perform unprecedented tests of the black hole paradigm.
- As a future prospect, accurate Bayesian analyses of the detectability of GW echoes need to be performed.
- Open challenges in the modeling:
 - How loud are GW echoes?
 - Which initial conditions describe the ringdown of a horizonless compact object when numerical simulation of inspiral-merger-ringdown waveforms in alternative scenarios are not available/limited?

Micchi+, PRD 103 (2021) 044028; Annulli+, CQG 39 (2022) 105005; Xin+, PRD 104 (2021) 104005; Ma+, PRD 105 (2022) 104007

Open challenges in the searches:

Are matched-filtered or unmodelled searches more suitable to search for GW echoes?