




Nuclear Physics

-- Division 6 --

chairs: Tim Dietrich, Tanja Hinderer, Micaela Oertel

Overview of division activities

Fundamental inputs

EoSs, microphysics (viscosities, neutrinos, reaction rates, ...),...

Uncertainties in measurements

Shortcomings in GW models, simulations, microphysics inputs Degeneracies with modified gravity, BSM physics

GW signatures & constraints

Dense matter physics at low temperature & in postmerger regimes, supernovae, magnetars, continuous GWs...

 Brings together ~ 100 division members from different fields (subatomic physics, numerical relativity, analytical modeling, data analysis,...)

Overview of division activities

- Contribution to Blue book with a dedicated chapter
- Community building e.g. through regular meetings
- Provide input EoS models for the ET community (e.g. injection and data analysis studies) (-> see Armen's talk)
 - Two examples also implemented in the MDC generation code [Tania Regimbau]
- Contributions to CoBA study (-> see Francesco's talk)
 - Comparison of triangle & 2L detector configurations for inspiral & post-merger signal
 - No significant difference for nuclear physics outcome, longer arm length slightly preferred (higher sensitivity at high frequencies)

Wiki: https://wiki.et-gw.eu/OSB/NuclearPhysics/WebHome

• monthly division meetings, regularly attended by ~30-40 members (presentations of recent work, discussions)

You are here: ET - Einstein Telescope Wiki Pages > OSB/NuclearPhysics Web > Meetings

Nuclear physics division telecons & minutes

Division meetings

- Division meeting, December 8, 2021
- Division meeting, March 9, 2022
- Division meeting, April 12, 2022
- Division meeting, May 25, 2022
- Division meeting, June 21, 2022
- Division meeting, October 25, 2022
- Division meeting, December 7, 2022
- Division meeting, January 31, 2023
- Division meeting, February 22, 2023
- Division meeting, March 28, 2023
- Division meeting, April 26, 2023

Topical presentations and discussions

Many presentations by junior researchers on various topics, e.g.:

- Out of beta-equilibrium effects in BNS merger signals
- Detectability of strong phase transition from GW signals
- Impact and detectability of spin-tidal couplings with ET
- EoS extraction with ET using tidal effects and r-mode excitations
- The dense matter EoS and its compatibility with NS observations
- Bulk viscosity in BNS mergers
- The effect of dark matter on EoS constraints
- The capability of ET to measure postmerger properties
- Constraining nucleon dynamics with astrophysical observations
- EoS constraints from perturbative QCD
- ➤ The low density EoS
- Detectability of inertial modes from HMNS with 3G detectors
- Revealing the strength of three-nucleon interactions with ET

ET-specific publications

Please add items in reverse chronological order and use the format: Title, Authors, Journal (DOI)(link to paper on ET-TDS)(arXiv)

2023

- Revealing the strength of three-nucleon interactions with the Einstein Telescope, Henrik Rose, Nina Kunert, Tim Dietrich, Peter Pang, Rory Smith, Chris van den Broeck, Stefano Gandolfi, Ingo Tews, (https://apps.et-gw.eu/tds/?content=3&r=18182)(https://arxiv.org/abs/2303.11201)
- Thermal Effects in Binary Neutron Star Mergers, Jacob Fields, Aviral Prakash, Matteo Breschi, David Radice, Sebastiano Bernuzzi, André da Silva Schneider (https://arxiv.org/abs/2302.11359)
- Prospects for the inference of inertial modes from hypermassive neutron stars with future gravitational-wave detectors. Miquel Miravet-Tenés, Florencia L. Castillo, Roberto De Pietri, Pablo Cerdá-Durán, José A. Font (https://apps.et-gw.eu/tds/?content=3&r=18119)(https://arxiv.org/abs/2302.04553)
- Effect of dynamical gravitomagnetic tides on measurability of tidal parameters for binary neutron stars using gravitational waves, Pawan Kumar Gupta, Jan Steinhoff, Tanja Hinderer (<u>https://apps.et-gw.eu/tds/ql/?</u> c=16523)(https://arxiv.org/abs/2302.11274)
- General Relativistic Simulations of High-Mass Binary Neutron Star Mergers: rapid formation of low-mass stellar black holes, Kutay A. Cokluk, Kadri Yakut, Bruno Giacomazzo (https://apps.et-gw.eu/tds/ql/? c=16511)(https://arxiv.org/abs/2301.09635)
- Pre/post-merger consistency test for gravitational signals from binary neutron star mergers, Matteo Breschi, Gregorio Carullo, Sebastiano Bernuzzi (https://arxiv.org/abs/2301.09672)

2022

- Determining the equation of state of neutron stars with Einstein Telescope using tidal effects and r-mode excitations during binary inspiral, Pawan Kumar Gupta, Anna Puecher, Peter T.H. Pang, Justin Janquart, Gideon Koekoek, Chris Van Den Broeck, (https://apps.et-gw.eu/tds/ql/?c=16259)(https://arxiv.org/abs/2205.01182)
- Impact and detectability of spin-tidal couplings in neutron star inspirals, Goncalo Castro, Leonardo Gualtieri, Andrea Maselli, Paolo Pani, Phys.Rev.D 106 (2022) 2, 024011 (https://apps.et-gw.eu/tds/? content=3&r=17837) (https://arxiv.org/abs/2204.12510)
- Detecting the impact of nuclear reactions on neutron star mergers through gravitational waves, Peter Hammond, Nils Andersson, Ian Hawke, *Phys.Rev.D* 107 (2023) 4, 043023 (https://apps.et-gw.eu/tds/ql/? c=16287)(https://arxiv.org/abs/2205.11377)
- Kilohertz Gravitational Waves From Binary Neutron Star Mergers: Numerical-relativity Informed Postmerger Model, Matteo Breschi, Sebastiano Bernuzzi, Kabir Chakravarti, Alessandro Camilletti, Aviral Prakash, Albino Perego (https://arxiv.org/abs/2205.09112)
- Kilohertz Gravitational Waves from Binary Neutron Star Mergers: Inference of Postmerger Signals with the Einstein Telescope, Matteo Breschi, Rossella Gamba, Ssohrab Borhanian, Gregorio Carullo, Sebastiano Bernuzzi (https://arxiv.org/abs/2205.09979)
- Resonant tides in binary neutron star mergers: analytical-numerical relativity study, Rossella Gamba, Sebastiano Bernuzzi (https://arxiv.org/abs/2207.13106)
- Sensitivity of Neutron Star Observations to Three-nucleon Forces, Andrea Sabatucci, Omar Benhar, Andrea Maselli, Costantino Pacilio Phys. Rev. D 106 (2022) 8, 083010 (https://apps.et-gw.eu/tds/? content=3&r=17902) (https://arxiv.org/abs/2206.11286)
- Hubble constant and nuclear equation of state from kilonova spectro-photometric light curves, M. A. Pérez-García, L. Izzo, D. Barba-González, M. Bulla, A. Sagués-Carracedo, E. Pérez, C. Albertus et al., A&A (https://doi.org/10.1051/0004-6361/202243749)
- Crystallization in single- and multicomponent neutron star crusts, David Barba-González, Conrado Albertus, M. Ángeles Pérez-García, Phys. Rev. C (https://doi.org/10.1103/PhysRevC.106.065806) (https://apps.et-gw.eu/tds/?content=3&r=18092)
- Gamma rays run on time, by Daniel Beltrán Martínez, Gloria Tejedor García y Felipe J. Llanes-Estrada, JCAP 12 (2022) 004 (https://apps.et-gw.eu/tds/?content=3&r=17942)(https://aps/2208.02247)

2021

Constraints on the maximum densities of neutron stars from postmerger gravitational waves with third-generation observations, Matteo Breschi, Sebastiano Bernuzzi, Daniel Godzieba, Albino Perego, David Radice (https://arxiv.org/abs/2110.06957)

Progress on the chapter for the bluebook

Organization, structure, and section leads established, writing underway

1. Microphysics inputs

- 1.1. EoS modeling
- 1.2. Reaction rates, neutrinos, viscosities, nucleosynthesis, nuclear masses [text]

2. Constraints on microphysics with ET

- 2.1. Low-temperature: NS-NS inspirals, NS-BH binaries, continuous GWs [outline]
- 2.2. Finite-temperature: NS-NS postmergers, supernovae
- 2.3. Nucleosynthesis (with multimessenger) [outline]
- 3. Uncertainties and degeneracies in measurements and interpretations
 - 3.1. Impact of waveform systematics [outline]
 - 3.2. Uncertainties in simulations and the microphysics included
 - 3.3. Modified gravity and BSM physics impacts on EoS inferences and quasi-universal relations [outline+text]

Progress on the chapter for the bluebook

Organization, structure, and section leads established, writing underway

1. Microphysics inputs

1.1

1.2 Work in close coordination with other divisions

- 2. C > focus of Div. 6 material: implications for subatomic-/microphysics
 2.1 interpretations
 2.2
 - 2.3. Nucleosynthesis (with multimessenger) [outline]
- 3. Uncertainties and degeneracies in measurements and interpretations
 - 3.1. Impact of waveform systematics [outline]
 - 3.2. Uncertainties in simulations and the microphysics included
 - 3.3. Modified gravity and BSM physics impacts on EoS inferences and quasi-universal relations [outline+text]