Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter Report on collection of EoS to be used for injections

Armen Sedrakian

FIAS (Frankfurt) and IFT (Wroclaw University)

ET Symposium May 8, 2023

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter

In collaboration with:

Jia-Jie Li (South Western University, China) Arus Harutyunyan (Byurakan Astrophysical Observatory, Armenia) Mark Alford (Washington University, St. Louis, USA)

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter CDF based equations of states

- Using EoS in a form of density functional: the pressure of dense zero-temperature matter is a functional of energy-density: P(ε(r)).
- The parameters of the functional are adjusted to the available data (astrophysics, laboratory and ab initio calculations)
- DFT has been extended to baryon octet and includes hyperons and Delta-resonances
- Fast in implementation to generate quickly families of EoS
- Relativistic models of nuclear matter as DFT:
 (a) relativistic covariance, causality is fulfilled (+)
 - (b) The Lorentz structure of interactions is maintained explicitly (+)
 - (c) straightforward extension to the strange sector and resonances (+)
 - (d) fast implementation (+)
 - (e) not a QFT in the QED/QCD sense (-)
- Extended to finite-temperature and iso-entropic case The models are studied at S =Const. and Y_e =Const. (early stages of evolution, no significant entropy gradients in the core)
- Mapping of CDF onto the Taylor expansion of energy of nuclear matter A family of models are generated with varying symmetry energy, its slope, etc.

Nuclear matter Lagrangian:

 \mathcal{L}_{NL}

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter

$$\begin{split} \mathbf{g} &= \underbrace{\sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega BB} \omega_{\mu} - \frac{1}{2} g_{\rho BB} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} \right) - (m_{B} - g_{\sigma BB} \sigma) \right] \psi_{B}}_{\text{baryons}} \\ &+ \underbrace{\frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \omega^{\mu\nu} \omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu}}_{\text{mesons}}}_{\text{mesons}} \\ &- \underbrace{\frac{1}{4} \boldsymbol{\rho}^{\mu\nu} \boldsymbol{\rho}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu}}_{\text{mesons}} + \underbrace{\sum_{\lambda} \bar{\psi}_{\lambda} (i \gamma^{\mu} \partial_{\mu} - m_{\lambda}) \psi_{\lambda}}_{\text{leptons}} - \underbrace{\frac{1}{4} F^{\mu\nu} F_{\mu\nu}}_{\text{electromagnetism}}, \end{split}$$

- *B*-sum is over the baryonic octet
- Meson fields include σ meson, ρ_{μ} -meson and ω_{μ} -meson
- Leptons include electrons, muons and neutrinos for $T \neq 0$

Two types of relativistic density functionals based on relativistic Lagrangians

- linear mesonic fields, density-dependent couplings (DDME2, DD2, etc.)
- <u>non-linear mesonic fields</u>; coupling constant are just numbers (NL3, GM1-3, etc.)

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

Fixing the couplings: nucleonic sector

$$g_{iN}(\rho_B) = g_{iN}(\rho_0)h_i(x), \qquad h_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2} \quad i = \sigma, \omega,$$

$$g_{\rho N}(\rho_B) = g_{\rho N}(\rho_0) \exp[-a_\rho(x - 1)], \quad i = \rho, (\pi - HF)$$

Meson (i)	m_i (MeV)	a_i	b_i	ci	d_i	g _{iN}
σ	550.1238	1.3881	1.0943	1.7057	0.4421	10.5396
ω	783	1.3892	0.9240	1.4620	0.4775	13.0189
ho	763	0.5647				7.3672

 $h_i(1) = 1, h_i''(0) = 0$ and $h_{\sigma}''(1) = h_{\omega}''(1)$, which reduce the number of free parameters to three in this sector.

- DD-ME2 parametrization, G. Lalazissis, et al., Phys. Rev. C71, 024312 (2005)
- DD2 parametrizations, S. Typel, Eur. Phys. J. A52, 16 (2016)
- DD-ME2+LQ parametrizations, J. J. Li, Sedrakian, Phys. Rev. C100, 015809 (2019)

Taylor expansion of nuclear energy

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

 $E(\chi,\delta) \simeq E_0 + \frac{1}{2!} K_0 \chi^2 + \frac{1}{3!} Q_{\text{sym}} \chi^3 + E_{\text{sym}} \delta^2 + L \delta^2 \chi + \mathcal{O}(\chi^4,\chi^2 \delta^2),$ (1)

where $\delta = (n_n - n_p)/(n_n + n_p)$ and $\chi = (\rho - \rho_0)/3\rho_0$.

Consistency between the density functional and experiment

- saturation density $\rho_0 = 0.152 \text{ fm}^{-3}$
- binding energy per nucleon E/A = -16.14 MeV,
- incompressibility $K_{\text{sat}} = 251.15 \text{ MeV},$
- skweness $Q_{\text{sat}} = 479$
- symmetry energy $E_{\text{sym}} = 32.30 \text{ MeV},$
- symmetry energy slope $L_{\text{sym}} = 51.27 \text{ MeV},$
- symmetry incompressibility $K_{\text{sym}} = -87.19 \text{ MeV}$

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

- Uncertainties will be quantified in terms of variation of higher-order characteristics around the central fit values.

– Low density physics depends strongly on the value of $L_{\rm sym}$ with strong correlation to the radius of the star and tidal deformability

– High-density physics strongly depends on the value of Q_{sym} with strong correlations to the mass of the star.

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

– Variation of $-600 \le Q_{sat} \le 1000$ MeV and $30 \le L \le 110$

- Computed $9 \times 9 = 81$ matrix of EoS

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter

Left: EoS with two sequential phase transitions. *Right:* Mass-radius relationships, emergences of minima in the function M(R).

Case when $NY\Delta$ -matter makes a first order phase *sequential* transitions to various *generic new phases* (we had in mind phases of color superconducting phases).

$$p(\varepsilon) = \begin{cases} p_1, & \varepsilon_1 < \varepsilon < \varepsilon_1 + \Delta \varepsilon_1 \\ p_1 + s_1 \big[\varepsilon - (\varepsilon_1 + \Delta \varepsilon_1) \big], & \varepsilon_1 + \Delta \varepsilon_1 < \varepsilon < \varepsilon_2 \\ p_2, & \varepsilon_2 < \varepsilon < \varepsilon_2 + \Delta \varepsilon_2 \\ p_2 + s_2 \big[\varepsilon - (\varepsilon_2 + \Delta \varepsilon_2) \big], & \varepsilon > \varepsilon_2 + \Delta \varepsilon_2. \end{cases}$$

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

Low-density quark-hadron phase transition case.

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter

High-density phase transition case.

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysical constraints

Equation of state of dense matter

Phase transition to quark matter

Tidal deformabilities of compact objects with a single (left) and double (right) phase transition(s) for a fixed value of binary chirp mass $\mathcal{M} = 1.186 M_{\odot}$.

Report on collection of EoS to be used for injections

A Sedrakian

Current astrophysica constraints

Equation of state of dense matter

Phase transition to quark matter

Models available in the injection format.