The initial mass – remnant mass relation for core-collapse supernovae XIII ET Symposium

Cristiano Ugolini - SISSA PhD Student

cugolini@sissa.it

Collaborators: Prof. Marco Limongi, Prof. Mario Spera, Prof. Raffaella Schneider, Prof. Alessandro Chieffi, Prof. Alessandro Bressan

Before GWs

- Stellar BH upper • limit ~ $25M_{\odot}$
- BH detected in X-**Ray Binaries**

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

After O3

- Discovered a new population of stellar
 BHs that can form
 BH-BH binaries
- The heaviest BH has mass $86M_{\odot}$

How such massive objects can form?

Ingredients for BHB merger

Dynamical evolution of Stellar System

Evolution of Stellar Binaries

Final Fate of Massive Stars

Cristiano Ugolini - SISSA

XIII ET Symposium

Ingredients for BHB merger

Dynamical evolution of Stellar System

Evolution of Stellar Binaries

My research's Topic Final Fate of Massive Stars

Our tools:

- FRANEC stellar evolution code (Chieffi & Limongi 2013, Limongi & Chieffi 2018)
- **HYPERION** hydrodynamical code (Limongi & Chieffi 2020)

We performed a self-consistent and homogeneous study of stellar progenitors and their Cristiano Ugolini - SISSA XIII ET Symposium

Calibration of supernova explosions

The **free parameters** of the HYPERION code are:

- *E_{inj}*, the injected **thermal energy**;
- *dm_{inj}*, the mass interval where the energy is injected;
- dt_{inj} , the **time needed** to inject the energy

We calibrate the free parameters of HYPERION to match the observed properties of SN1987A

How we determine the remnant mass?

Successful SN explosion:

The most internal region do not reach the **escape velocity**

Failed SN explosion:

The shock **exhausts its energy** as it moves through the star

Non-rotating stellar progenitors

Metallicity strongly affects the final BH mass

Our code cannot follow the evolution of stars unstable against pair-production

 $M_{CO} = 35M_{\odot}$, criterion for the onset of **pulsational pairinstability supernovae** (Heger et al. 2002)

We use the results of Woosley et al. 2017 for the remnant masses

XIII ET Symposium

Implications of our results: the upper mass gap

Spera & Mapelli 2017

Implications of our results: the upper mass gap

Varying the **criterion** for the onset of PPISNe has a **crucial impact** on the **heaviest BH** that form from the evolution of **single stars**

Cristiano Ugolini - SISSA

XIII ET Symposium

Fitting Formulas

We search for any linear relation between the properties of the star at the pre-SN stage and its remnant mass.

 $dM/M = \frac{M_{preSN} - M_{rem}}{M_{rem}}$

Linear fits cannot capture the complexity of the physics behind the SN explosion mechanism

Summary and conclusion

• Homogeneous study of the **evolution** and **explosion** of massive stars

• BH mass spectrum and implications on the **position** of the upper mass gap

• Linear fits cannot capture the complexity of the physics behind the SN explosion mechanism

Thank you for your attention

Please feel free to contact me anytime if you have idea on the topic: cugolini@sissa.it

BH Mass Spectrum

We find **several peaks** in the **BH distribution**, which are features of the:

- <mark>IMF</mark>
- SN details
- **PPI prescriptions**

