Numerical relativity waveforms: status, progress and open challenges towards 3G detectors

Antoni Ramos-Buades

ET symposium May 10, 2023

Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut

Waveform knowledge crucial for GW astronomy

Testing GR

LIGO+Virgo, PRX2016 (1606.04856)

Parameter estimation

Methods for modeling compact binaries

© A. Buonanno, B.S. Sathyaprakash in: General Relativity and Gravitation: A Centennial Perspective; Cambridge, University Press (2015).

The first 60 years of numerical relativity for BBHs

1962 ADM 3+1 formulation	1992-93 Choptuik, Abrahams+Evans critical phenomena	1999-00 AEI/PSU grazing collisions	2000- AEI/UTE revive ci	-04 3-NASA rashing	2005 Pretc nspiral-me ingdown (v/ harmon	orius erger- (IMR) nic	A p	2007- jith, AEI, UIB, Cardiff henom GW models 2009-	2018-22 BAM, Maya, RIT, SXS large catalogs of BBHs	
1964 Hahn-Lindquist 2 wormholes	1997 Brandt-Brugmann puncture data	~2000 Choptuik Schnetter; Brugmar mesh refinemen	; in t	-uzuru3)	2005-0 Campa IMR w moving	2005-06 Campanelli+; Baker+ MR w/ BSSN & moving punctures		UMD, SXS EOB GW models 2011	2018- Huerta+;ARB+;Islam+ Catalogs of eccentric BBHs	-ls
1984 Unruh excision	1994-98 BBH Grand Challe	2005 Gundlach+ onstraint damping			2006-08 Scheel+ SXS		Schmidt+; Boyle+ Radiation aligned fr	ame		
1964		~1999		~200	5 L		spectru	~2015	2023	
1975-77 Smarr-Eppley head-on collision	1994 Cook Bowen-York initial data	1999 BSSN evolution system	2000-02 Alcubierre gauge cone	e Bal ditions kicl	2006-07 ker+; Gon n-spinning ks	zalez+; g BH	20 all of NIN	008 2011 NR Lovelace+ JA a = 0.97	2019-20 Pound+; Wardell+; Second order self-force NR comparisons	
1979 Y kinematics dynamics	ork 19 s and NSC/ of GR im	94-95 1999 N A-WashU confor proved sandw	′ork mal thin ich ID	2004 Brugmar one orbi	10+ PN- t	2007 SX: -NR con 2009-11	S nparison	2011 Lousto+ q=100 2011	2019- Kidder+; Fernando+; Daszuta+:	
1989-95 Bona-Masso modified ADM (hyperbolicity)		1999-2005 York, Cornell, Caltech, LSU hyperbolic formulations		2003-08 Cook, Pfeiffe improved ID	r+ (Bishop, Cauchy characte extractio	 eristic on	-eTiec+ Ne self-force nu studies (Sj 2013 De	Next generation of numerical relativity codes (SpECTRE, Athena++, DendroGR,)	
Based on slide by Lousto and Pfeiffer		2000 Ash isolated h	20 000 Ashtekar RIT; olated horizons BBH		El; 2010 El; Berr icks C4z		zzi+	GaTech; SXS Precessing parameter studies		4

Two main approaches for BBH simulations

BSSN and moving punctures

BAM, ETK, LazEv, Goddard, GRChombo, Lean, ...

Puncture initial data spins<0.9 (except Zlochower+17)

BSSN or CC4z

Moving puncture mergers "easy"

Sommerfeld outer boundary condition

Finite-difference methods

GW extrapolation (Healy,Lousto20 for LazEv CoM correction) Generalized harmonic and spectral

SpEC (SXS collaboration)

Quasi-equilibrium excision data spins<0.999

Generalized harmonic evolution system

BH excision mergers "difficult"

Constraint preserving, minimally reflective outer boundary condition

Spectral methods

🛰 long, accurate inspirals

GW extrapolation & CoM correction

Cauchy-characteristic extraction accurate m=0 modes, GW memory

Applications of BBH simulations

- Parameter space coverage (Maya, RIT, SXS catalogs)
- Improvement of semi-analytical waveform models.
- Benchmark perturbative methods.

Challenge of NR: small mass ratios

• Number of time-steps

$$N_{
m steps} \propto rac{1}{q^2} rac{1}{(M\Omega_0)^{8/3}}$$

0.1 r/m h²² 0.05 50 days -0.05 -0.1 200 400 600 800 1200 1400 1600 1000 0.1 32:1 r/m h²² 0.05 \sim -0.05 70 days -0.1 200 400 600 800 1000 1200 1400 1600 0.1 64:1 r/m h²² 0.05 100 days 0 -0.05 -0.1 200 400 600 800 1000 1200 1400 1600 0.1 0.05 128:1 r/m h²² 200 days 0 -0.05 -0.1 200 400 600 800 1000 1200 1400 1600

Very expensive and limited convergence tests for 1/q > 32

q : steps per orbit (Courant limit - numerics) q : orbits per inspiral (physics) (M Ω_0)^{8/3} : starting frequency

 $\boldsymbol{\chi} \ge 0.6$: extra factor ~ 1/(1- $\boldsymbol{\chi}_1$)(1- $\boldsymbol{\chi}_2$)

- New methods to remove 1/q factor due to the Courant limit [Wittek+23]
 - Worldtube excision of the small BH.
 - \circ \quad Interior perturbative solution matched with outer full evolution.

Working example for scalar charge, implementation on BBHs on progress

Lousto&Healy20 (2006.04818)

Beyond quasi-circular BBHs

- Full BBH parameter space : mass ratio, spins, eccentricity, radial phase.
- Large catalogs (Maya, RIT and SXS catalogs) \rightarrow mostly quasi-circular.
- 3G detectors \rightarrow higher sensitivity at low frequencies \rightarrow non-circular binaries more likely (Sessana10, Samsing+2018)

Efforts to populate eccentric BBH parameter space

Unbound-orbit BBH parameter space exploration

(Damour+14, Bae+17, Bae+20, Hopper+22, Rueter+23)

15

Accuracy requirements for future GW detectors

- Studies of accuracy requirements on waveform models and NR waveforms [Puerrer, Haster19; Ferguson+20]. .
- For 3G waveform models to be at least 3 orders of magnitude more accurate, 1 order of magnitude for NR waveforms.

Conservative estimate based on indistinguishability criterion \rightarrow More systematic studies needed!

Conclusions

- Current NR codes \rightarrow routinely simulations of compact binaries (BBHs, BNS, core-collapse supernovae,...)
- Main open challenges:
 - BBHs:
 - Parameter space coverage.
 - Meet accuracy and length requirements.
 - Initial data for extremal configurations and beyond GR theories.
 - Evolutions in beyond GR theories.
 - BNS:
 - Accuracy of codes to more complex EoS.
 - More accurate post-merger GW signals (MHD and neutrinos).
 - Resolution of the growth of large scale magnetic fields.
 - Core-collapse supernovae:
 - Parameter space coverage of microphysics accurate 3D simulations.
 - Realistic initial conditions from late-stage massive stars.
- Next generation of NR codes under development to address these challenges!