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Different Fisher Matrix Codes

Various groups have developed their own Fisher matrix codes:

S. Borhanian, 2021, 
Class.Quant.Grav.

GitLab link
F. Iacovelli, 
M. Mancarella, et al.
2022, Astrophys.J. 

GitHub link

Li et al.
2022,  Phys. Rev. D

U. Dupletsa, J. Harms, 
et al.
2023, Astronomy and 
Computing

GitHub link

https://gitlab.com/sborhanian/gwbench/-/tree/master
https://github.com/CosmoStatGW/gwfast
https://github.com/janosch314/GWFish
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In OSB 9 division we 

compare and 
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Quick Recap of Fisher Matrix Formalism
In the high Signal to Noise Ratio (SNR) limit and linearized signal approximation, the 
likelihood function can be approximated as a multivariate Gaussian with covariance matrix 
given by the inverse of the Fisher matrix:

where:
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Quick Recap of Fisher Matrix Formalism
In the high Signal to Noise Ratio (SNR) limit and linearized signal approximation, the 
likelihood function can be approximated as a multivariate Gaussian with covariance matrix 
given by the inverse of the Fisher matrix:

where:

 

data noise signal
We use zero noise 

approximation!
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Forecasts for 3G Detectors

● Fisher matrix codes are particularly useful to study the performance of 
future GW observatories (we focus here on ET and CE in particular)

● Computationally convenient: processing of entire populations (~1e5 events)
● Each event takes ~0.2-0.3 seconds to complete with GWFish (this is to 

compare with full PE softwares as Bilby that take some days to process a 
GW event)
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See also the CoBA study!

[Branchesi, Maggiore et al. 2023]



Detector Networks available in GWFish

● Potential upgrades of the current 
infrastructures: Virgo, LIGO (Hanford 
and Livingston), LIGO India and 
KAGRA

● The proposed Einstein Telescope and 
Cosmic Explorer (both second half of 
2030s)

● The approved space-borne detector 
LISA, expected to begin observations in 
the second half of 2030s

● New detector concept on the lunar 
surface: LGWA



BNS Population [U. Dupletsa & J. Harms  et al., Astronomy and Computing, 2023]

● BNSs at fixed luminosity distances (1e3 BNSs per curve) of 1.4+1.4Msol
● Sky localization at 90% credible region
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BBH Population

1 year BBH population

[Santoliquido et al., 2021]



Multi-Band Example [U. Dupletsa & J. Harms  et al., Astronomy and Computing, 2023]
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GWFish vs 
Bilby 

Results Comparison 
for one BBH signal

[U. Dupletsa & J. Harms  et al., 
Astronomy and Computing, 2023]



Low SNR Case [U. Dupletsa & J. Harms  et al., Astronomy and Computing, 2023]



Low SNR Case [U. Dupletsa & J. Harms  et al., Astronomy and Computing, 2023]

Huge errors!



Beyond Fisher matrix: GWFish + Priors

In some cases with a Fisher matrix analysis we 
estimate an uncertainty on a parameter which 
goes out of the range the parameter can be in

This happens especially for angles which have 
a limited range:

or parameters like luminosity distance which 
can extend to negative values
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Adding a Flat Prior: Sample Rejection

1. Generate samples from the multivariate Gaussian distribution obtained from the 
Fisher matrix analysis

2. Discard samples that go out of the prior range for a given variable (uniform prior)
3. Re-calculate the standard deviation on that variable using the filtered sample

discard
discard



GWFish + Flat Prior: Results Comparison



GWFish + Flat Prior: Results Comparison

The error is smaller!

36% of samples 
was rejected



Adding a non Uniform Prior

● Accept/reject samples according to a 
distribution of inclination angle which is 
uniform in cosine 

def iota_distr(x):

    return np.sin(x)/2.
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Conclusions

● A great wealth of data is expected in the near future in the GW field posing a 
new computational challenge

● Certain analyses are currently not possible with state-of-the-art detector 
simulation and Bayesian analysis software like bilby, due to practical 
constraints on available computational resource

● Fisher-matrix codes like GWFish are the best option to exploit in preparation 
of a new Bayesian parameter-estimation software 

● We can go beyond Fisher matrix analysis adding priors on Fisher matrix 
parameters and still remaining computationally competitive



Thank you all!


