

Cagliari, 8-12 May 2023

Fisher Information Matrix for ET Forecasts: How Informative is it?

OSB9 Division - Wednesday May 10th

G S GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore **Ulyana Dupletsa**

Different Fisher Matrix Codes

Various groups have developed their own Fisher matrix codes:

Different Fisher Matrix Codes

Various groups have developed their own Fisher matrix codes:

In the **high Signal to Noise Ratio (SNR) limit** and **linearized signal approximation**, the likelihood function can be approximated as a **multivariate Gaussian** with covariance matrix given by the inverse of the Fisher matrix:

$$p(d|\vec{\theta}) \approx \exp\left(-\frac{1}{2}\langle n - \left(\theta^{i} - \theta_{0}^{i}\right)\partial_{\theta^{i}}h(\vec{\theta}_{0})|n - \left(\theta^{i} - \theta_{0}^{i}\right)\partial_{\theta^{i}}h(\vec{\theta}_{0})\rangle\right)$$
$$\approx \exp\left(-\frac{1}{2}\langle n|n\rangle\right) + \exp\left(-\frac{1}{2}\Delta\theta^{i}\Gamma_{ij}\Delta\theta^{j}\right)$$

where:

$$d = n + h(\vec{\theta_0})$$

data noise signal

In the **high Signal to Noise Ratio (SNR) limit** and **linearized signal approximation**, the likelihood function can be approximated as a **multivariate Gaussian** with covariance matrix given by the inverse of the Fisher matrix:

$$p(d|\vec{\theta}) \approx \exp\left(-\frac{1}{2}\langle n - \left(\theta^{i} - \theta_{0}^{i}\right)\partial_{\theta^{i}}h(\vec{\theta}_{0})|n - \left(\theta^{i} - \theta_{0}^{i}\right)\partial_{\theta^{i}}h(\vec{\theta}_{0})\rangle\right)$$

$$\approx \exp\left(-\frac{1}{2}\langle n|n\rangle\right) + \exp\left(-\frac{1}{2}\Delta\theta^{i}\Gamma_{ij}\Delta\theta^{j}\right)$$

$$Fisher Matrix$$

$$d = n + h(\vec{\theta}_{0})$$

$$\Gamma_{ij} = \langle\partial_{i}h(\vec{\theta})|\partial_{j}h(\vec{\theta})\rangle\Big|_{\theta_{0}}$$

where:

data noise signal

In the **high Signal to Noise Ratio (SNR) limit** and **linearized signal approximation**, the likelihood function can be approximated as a **multivariate Gaussian** with covariance matrix given by the inverse of the Fisher matrix:

where:

where:

In the high Signal to Noise Ratio (SNR) limit and linearized signal approximation, the likelihood function can be approximated as a **multivariate Gaussian** with covariance matrix given by the inverse of the Fisher matrix:

Forecasts for 3G Detectors

- Fisher matrix codes are **particularly useful to study the performance of future GW observatories** (we focus here on ET and CE in particular)
- **Computationally convenient**: processing of entire populations (~1e5 events)
- Each event takes ~0.2-0.3 seconds to complete with GWFish (this is to compare with full PE softwares as **Bilby** that take some days to process a GW event)

Forecasts for 3G Detectors

- Fisher matrix codes are particularly useful to study the performance of future GW observatories (we focus here on ET and CE in particular)
- **Computationally convenient**: processing of entire populations (~1e5 events)
- Each event takes ~0.2-0.3 seconds to complete with GWFish (this is to compare with full PE softwares as **Bilby** that take some days to process a GW event)

Detector Networks available in GWFish

- Potential upgrades of the current infrastructures: Virgo, LIGO (Hanford and Livingston), LIGO India and KAGRA
- The proposed Einstein Telescope and Cosmic Explorer (both second half of 2030s)
- The approved space-borne detector
 LISA, expected to begin observations in the second half of 2030s
- New detector concept on the lunar surface: LGWA

ЕΤ

ET + CE

- BNSs at fixed luminosity distances (1e3 BNSs per curve) of 1.4+1.4Msol
- Sky localization at 90% credible region

- BNSs at fixed luminosity distances (1e3 BNSs per curve) of 1.4+1.4Msol
- Sky localization at 90% credible region

- BNSs at fixed luminosity distances (1e3 BNSs per curve) of 1.4+1.4Msol
- Sky localization at 90% credible region

- BNSs at fixed luminosity distances (1e3 BNSs per curve) of 1.4+1.4Msol
- Sky localization at 90% credible region

Multi-Band Example [U. Dupletsa & J. Harms et al., Astronomy and Computing, 2023]

Multi-band observation with ET+LISA. We simulated an IMBH binary system of $4000M_{\odot}$ and $2000M_{\odot}$ at a distance of 1.2 Gpc. The errors are given at 1σ and the sky localization is at 90% C.L.. We used a frequency resolution of 1/16 Hz for ET and 10^{-4} Hz for LISA.

	inj_value	err_LISA	err_ET	err_LISA_ET
SNR		70.5	250	260
$m_{1,\mathrm{src}} [M_{\odot}]$	4000	± 0.036	± 19	± 0.032
$m_{2,src} [M_{\odot}]$	2000	± 0.016	± 21	± 0.015
d _L [Mpc]	1200	±21	± 218	±19
RA [rad]	0.37	± 0.022	± 0.029	± 0.0072
DEC [rad]	-0.36	± 0.0082	± 0.046	± 0.0054
ι [rad]	1.6	± 0.010	± 0.040	± 0.0081
Ψ [rad]	1.7	± 0.015	± 0.040	± 0.0054
phase [rad]	3.5	±0.72	±0.11	± 0.028
t_c [s]	1120381489.6	± 0.59	± 0.0050	± 0.0020
sky-loc [deg ²]		7.2	56	1.1

Multi-Band Example [U. Dupletsa & J. Harms et al., Astronomy and Computing, 2023]

Multi-band observation with ET+LISA. We simulated an IMBH binary system of $4000M_{\odot}$ and $2000M_{\odot}$ at a distance of 1.2 Gpc. The errors are given at 1σ and the sky localization is at 90% C.L.. We used a frequency resolution of 1/16 Hz for ET and 10^{-4} Hz for LISA.

	inj_value	err_LISA	err_ET	err_LISA_ET
SNR		70.5	250	260
$m_{1, \text{src}} [M_{\odot}]$	4000	± 0.036	± 19	± 0.032
$m_{2,src} [M_{\odot}]$	2000	± 0.016	± 21	± 0.015
d _L [Mpc]	1200	±21	± 218	±19
RA [rad]	0.37	± 0.022	± 0.029	± 0.0072
DEC [rad]	-0.36	± 0.0082	± 0.046	± 0.0054
ι [rad]	1.6	± 0.010	± 0.040	± 0.0081
𝖞 [rad]	1.7	± 0.015	± 0.040	± 0.0054
phase [rad]	3.5	± 0.72	±0.11	± 0.028
t_c [s]	1120381489.6	± 0.59	± 0.0050	± 0.0020
sky-loc [deg ²]		7.2	56	1.1

GWFish vs Bilby

Results Comparison for one BBH signal

[U. Dupletsa & J. Harms et al., Astronomy and Computing, 2023]

Low SNR Case [U. Dupletsa & J. Harms et al., Astronomy and Computing, 2023]

	BILBY	GWFISH
RA [rad]	$4.5^{+0.5}_{-0.5}$	4.1 ± 83
DEC [rad]	$-0.66^{+0.32}_{-0.39}$	-0.97 ± 81
Ψ [rad]	$1.8^{+0.35}_{-0.43}$	2.1 ± 54
ι [rad]	$1.2^{+0.19}_{-0.31}$	1.3 ± 0.6
d _L [Mpc]	68508^{+26173}_{-18288}	58115 ± 64040
$m_{1,det} [M_{\odot}]$	$61.3^{+7.6}_{-7.2}$	65.9 ± 18
$m_{2,det}$ [M_{\odot}]	$35.2^{+4.3}_{-3.6}$	32.9 ± 8

W SNR Case [U. Dupletsa & J. Harms et al., Astronomy and Computing, 2023]		
		Huge errors!
	BILBY	GWFISH
RA [rad]	$4.5^{+0.5}_{-0.5}$	4.1 ± 83
DEC [rad]	$-0.66^{+0.32}_{-0.39}$	-0.97 ± 81
Ψ [rad]	$1.8^{+0.35}_{-0.43}$	2.1 ± 54
ι [rad]	$1.2^{+0.19}_{-0.31}$	1.3 ± 0.6
d _L [Mpc]	68508^{+26173}_{-18288}	58115 ± 6404
$m_{1,det} [M_{\odot}]$	$61.3^{+7.6}_{-7.2}$	65.9 ± 18
$m_{2,det} [M_{\odot}]$	$35.2^{+4.3}_{-3.6}$	32.9 ± 8

Beyond Fisher matrix: GWFish + Priors

In some cases with a Fisher matrix analysis we estimate an uncertainty on a parameter which goes **out of the range** the parameter can be in

This happens especially for **angles** which have a limited range:

$$\iota \in [0, \pi]$$

DEC $\in [-\pi, \pi]$
RA $\in [0, 2\pi]$
 $\Psi \in [0, 2\pi]$
 $\phi \in [0, 2\pi]$

or parameters like **luminosity distance** which can extend to negative values

Beyond Fisher matrix: GWFish + Priors

In some cases with a Fisher matrix analysis we estimate an uncertainty on a parameter which goes **out of the range** the parameter can be in

This happens especially for **angles** which have a limited range:

$$\iota \in [0, \pi]$$

DEC $\in [-\pi, \pi]$
RA $\in [0, 2\pi]$
 $\Psi \in [0, 2\pi]$
 $\phi \in [0, 2\pi]$

or parameters like **luminosity distance** which can extend to negative values

Adding a Flat Prior: Sample Rejection

- 1. Generate samples from the multivariate Gaussian distribution obtained from the Fisher matrix analysis
- 2. Discard samples that go out of the prior range for a given variable (uniform prior)
- 3. Re-calculate the standard deviation on that variable using the filtered sample

GWFish + Flat Prior: Results Comparison

GWFish + Flat Prior: Results Comparison

Adding a non Uniform Prior

 Accept/reject samples according to a distribution of inclination angle which is uniform in cosine

Adding a non Uniform Prior

• Accept/reject samples according to a distribution of inclination angle which is **uniform in cosine**

• A bigger sample is rejected (~67%) and the **final error is smaller**

```
random_vec = np.random.uniform(0,0.5,int(N_points))
mask_iota_prior = iota_distr(data['iota']) > random_vec
data = data.loc[mask_iota_prior]
data_per_cov = (data.to_numpy()).T
```

```
return np.cov(data_per_cov)
```

Adding a non Uniform Prior

Accept/reject samples according to a distribution of inclination angle which is uniform in cosine

def iota_distr(x):
 return np.sin(x)/2.

• A bigger sample is rejected (~67%) and the **final error is smaller**

```
random_vec = np.random.uniform(0,0.5,int(N_points))
mask_iota_prior = iota_distr(data['iota']) > random_vec
data = data.loc[mask_iota_prior]
data_per_cov = (data.to_numpy()).T
```


Conclusions

- A great wealth of data is expected in the near future in the GW field posing a new computational challenge
- Certain analyses are currently not possible with state-of-the-art detector simulation and **Bayesian analysis** software like bilby, due to practical constraints on available computational resource
- Fisher-matrix codes like **GWFish** are the best option to exploit in preparation of a new Bayesian parameter-estimation software
- We can go beyond Fisher matrix analysis **adding priors** on Fisher matrix parameters and still remaining computationally competitive

Thank you all!