Joint detection of BNS mergers in the ET era: the crucial role of Swift-like space missions

Samuele Ronchini

GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES

We acknowledge the INFN Computing Center of Turin for computational resources

Overview

Goal of this work:

Provide an exhaustive overview about the **joint detection** of:

- 1. gravitational waves (GWs)
- 2. Electromagnetic (EM) counterpart in the high energy domain

from the coalescence of NS binaries, in the era of 3G GW detectors

Redshift

Samuele Ronchini, PennState University

GW

EM

Relevance of this work:

- Highlight the role of wide field space telescopes for the identification of the EM counterpart
- Evaluate the scientific return of future GW-EM synergies
- **Define the best technical** design of future GW and EM instruments, to optimally achieve the multimessenger science goals

The 3rd generation of GW detectors: steps forwards

Einstein Telescope (ET)

- Triangle geometry
- Xilophone concept: low
 - frequency at cryogenic

temperature + high

frequency at room

temperature

Underground to

minimise seismic noise

(CE)

Extension of LIGO concept with **10x longer**

arms

From Chan et al. 2018

_	_		_	_	_	_	_	T	_	_		
											1	
											ľ	-
											L	
											ŀ	-
											L	
											Ŀ	
											E	_
											Г	7
											Ŀ	-
1	C	1	-	r	٦	r	٦	4	ב		L	
	9	`	-	Ļ	,	Þ	,	s	-		ŀ	-
											L	
											ŀ	-
			F	2	r						t	_
-	'		~	-	•						L	
		1						7			J	-
								1				
-	-	-	-	-	-	-		Ť	-	-	-	-
								1				
	5	Ē	1					ż				
		ũ						ĩ				
								ĩ				
		-	-		-	-	-	Ť	-		-	-
								ł.				
	-	1			-		-	Ť				-
	1							î.				
-	-)	-	-			-		÷			-	-
					2			Σ				
								Т				
-	1	1	-	-	-	-	-	ĩ	-	-	-	-
								i.				
-	-	-				-		Ť				-
								5				
_	5	E	-	_	-	-	-	t	-	-	-	
_	0	-	_	_	_	_	_	ĩ	_	_	_	
								1				
-		-	-	-	-	-	-	Т	-	-	-	_
								1				
	1					-		î				-
								i.				
=	2	E	=	-	=	-		÷				
			_	-	ē		-	1				
1		1						ľ				
		ĩ	-	-	-		-	ĩ	-	-	-	1
								j.				
		-						Ť				-
								ł.			-	
2	5		-	-	-			Ċ	5		1	
ŝ		-	-		_		_	í.				
								Į.			1	
								T			-	۱
	_							1				
1	-	ĩ	-	1	-	-	7	ŝ	1	7	-	1
					-			2				
					2	1	-	t		-	-	
2		-						Į.				
	_			_	_			i.				
	1			-				ĩ			-	1
								5				
-		-	-	-	-	-	-	T	-	-	-	-
								î.				
	5	C				-	-	î			-	
_		1	-	-	_	_	_	ĩ		_		_

The 3rd generation of GW detectors: science case

- 10^{5} - 10^{6} detections / yr of stellar mass BH mergers up to z~100
- Detection of primordial BH \bullet
- Detection of ~ 10^5 BNS mergers/yr beyond the star formation peak \bullet
 - ET more sensitive at low frequency \rightarrow the inspiral is followed for a longer time -> better sky localisation
 - Access the effects of tidal deformations at the moment of the merger \rightarrow NS EoS
- Test of GR during the inspiral and in the post-merger (e.g. BH ringdown)
- Nature of dark energy and modifications of GR at cosmological distances

Samuele Ronchini, PennState University

Samuele Ronchini, PennState University

The 3rd generation of GW detectors: population studies

Dupletsa et al. 2022

- Parameter estimation based on **Fisher-matrix** approximation
- Includes the effect of Earth rotation (not negligible for long-lasting signals)
- Computationally efficient
- Ideal to process large amount of injections and to obtain average population properties
- Gives robust results in the **limit of high SNR**

From BNS mergers to short GRBs

binary population synthesis model

Samuele Ronchini, PennState University

From BNS mergers to short GRBs

binary population synthesis model

Samuele Ronchini, PennState University

INSTRUMENT	band	$F_{ m lim}$	$FOV/4\pi$	loc. acc.	Joint ET	N_{ID}/N_{γ}	Joint (ET+CE)	N_{JD}/N_{γ}	
	MeV	erg cm ^{-2} s ^{-1}			+γ-ray	027 7	+γ-ray		
Fermi-GBM	0.01 - 25	0.5(*)	0.75	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$	
Swift-BAT	0.015 - 0.15	2×10^{-8}	0.11	1-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$	
SVOM-ECLAIRs	0.004 - 0.250	1.792(*)	0.16	< 10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$	
SVOM-GRM	0.03 - 5	0.23(*)	0.16	$\sim 5 \deg$	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	
THESEUS-XGIS	0.002 - 10	3×10^{-8}	0.16	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$	
HERMES	0.05 - 0.3	0.2(*)	1.0	1 deg	84_{-30}^{+42}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$	
TAP-GTM	0.01 - 1	1(*)	1.0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$	

Fermi GBM+ET

Samuele Ronchini, PennState University

Fermi GBM+(ET&CE)

Samuele Ronchini, PennState University

4π	loc. acc.	Joint ET	N_{ID}/N_{γ}	Joint (ET+CE)	N_{ID}/N_{γ}
		+γ-ray	- • JD7 - • Y	+γ-ray	- · JD7- · y
	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$
E E	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$
	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$
2	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$
)	1 deg	84^{+42}_{-30}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$
)	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$

Fermi GBM+(ET&CE)

Samuele Ronchini, PennState University

4π	loc. acc.	Joint ET	N_{ID}/N_{γ}	Joint (ET+CE)	N_{ID}/N_{γ}
		+γ-ray	- • JD 7- • Y	+γ-ray	- · JD7 - · γ
	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$
E E	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$
	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	95 ⁺⁵ ₋₄ %
2	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$
)	1 deg	84^{+42}_{-30}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$
)	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$

Fermi GBM+(ET&CE)

Samuele Ronchini, PennState University

		1				•	
4π	loc. acc.	Joint ET	N_{JD}/N_{γ}	Joint (ET+CE)	N_{JD}/N_{γ}		
		+γ-ray		+γ-ray			
	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$]	
	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$		
5 F	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	95 ⁺⁵ ₋₄ %		Few t
0	~ 5 deg	9 ⁺⁴ ₋₃	$59^{+6}_{-6}\%$	14+6	$92^{+3}_{-3}\%$		loca
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$		ev
)	1 deg	84_{-30}^{+42}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$		
)	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84+30	$95^{+5}_{-6}\%$		

Fermi GBM+(ET&CE)

Two kinds of joint detections

Fermi-like telescopes

- ~ all sky monitors
- Possibility to build constellations at fairly low cost
- Best sensitivity around the sGRB peak energy
- $\sim \text{deg location accuracy}$

PROS

- Confirm the spatial and temporal coincidence with the GW
- Characterise the spectral shape up to high energies
- High number of joint detections \Rightarrow statistical studies

Samuele Ronchini, PennState University

Swift-like telescopes

- Good sky coverage
- Arcmin location accuracy
- Possibility to promptly follow up with ground-based telescopes

PROS

- Identification of the host galaxy
- Determination of the redshift
- Detection of X-ray counterparts (standard GRB afterglow, jet-KN ejecta interaction, SBO, wind from magnetar...)
- Less number of events but with deeper understanding of the GRB physics

GW sky localisation

ET

	ET	ET+CE	ET+20
N _{det}	143970	458801	59256
$N_{\rm det}(\Delta \Omega < 1~{ m deg}^2)$	2	184	5009
$N_{\rm det}(\Delta \Omega < 10~{ m deg}^2)$	10	6797	15416
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	49381
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	58531

Samuele Ronchini, PennState University

ET+CE

ET+2CE

GW sky localisation

ET

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317

ET+CE

ET+2CE

Detectability of the afterglow emission: survey vs pointing

How to detect X-ray emission:

1. In survey mode: probability ~FOV/4 π of detecting

by chance the source

2. In **pointing mode**: selection of the sources with $\Delta \Omega$ $< 100 \text{ deg}^2$

	THESEUS-SXI	ТАР	Einstein Probe	Gamo
Energy band	0.3-5 keV	0.3-5 keV	0.5-4 keV	0.3-5 k
Field of view	0.5 sr	0.4 sr	1.1 sr	0.4 s

Number of BNS mergers / yr detected in GWs and X-rays

Survey mode

	ET	ET+2CE
EP	50^{+15}_{-16}	64^{+12}_{-20}
Gamow	9^{+2}_{-2}	10^{+3}_{-3}
THESEUS-SXI	11^{+3}_{-3}	13^{+4}_{-3}
THESEUS-(SXI+XGIS)	23^{+6}_{-5}	27^{+7}_{-5}
TAP-WFI	16^{+3}_{-4}	17^{+6}_{-3}

e

	ET	ET+CE	ET+2CE	
EP	9^{+5}_{-3}	294^{+80}_{-59}	359^{+168}_{-110}	
THESEUS-SXI/	7+5	95+43	122+41	
Gamow	′-3	-14	-23	
TAP-WFI	8^{+5}_{-3}	182^{+43}_{-31}	225^{+76}_{-72}	

Samuele Ronchini, PennState University

For 2-3 GW detectors active, pointing better than survey, but...

		ET	ET+CE	ET+2CE		
EP		9 ⁺⁵ ₋₃	294^{+80}_{-59}	359^{+168}_{-110}		
THESEUS-S	XI/	7 ⁺⁵	95 +43	1 22 +41		
Gamow		7-3	75 -14	-23		
TAP-WFI	[8^{+5}_{-3}	182^{+43}_{-31}	225^{+76}_{-72}		
				100 s	1 hr	4 hr
Einstein Probe		n Probe	359^{+168}_{-110}	48^{+24}_{-15}	17^{+15}_{-10}	
	THESEUS-SXI/ Gamow		122^{+41}_{-23}	12 ± 7	< 9	
TAP		TAP-	WFI	225^{+76}_{-72}	50^{+20}_{-10}	17^{+10}_{-5}

A rapid response is necessary to catch the brighter phase of the afterglow

Samuele Ronchini, PennState University

Following-up all the sources with $\Delta \Omega <$ 100 deg² is unfeasible

Other GW parameters should be exploited to restrict the selection:

- SNR
- Viewing angle and relative error
- Luminosity distance and relative error

h(t)

For some golden cases, enough SNR can be accumulated already **before** the merger

Samuele Ronchini, PennState University

Pre-merger sky localisation

Future Cherenkov telescopes, like CTA, will be able to point in the direction of the GRB at the moment of the merger, allowing to detect possible very-high energy emission during the prompt phase

h(t)

For some golden cases, enough SNR can be accumulated already **before** the merger

Samuele Ronchini, PennState University

Pre-merger sky localisation

The importance of WFX-ray telescopes

Joint γ -ray+GW detection efficiency (ET+Fermi-GBM)

Too off-axis to have a detectable γ -ray emission

Samuele Ronchini, PennState University

Redshift distribution of joint X-ray+GW detections, in pointing mode

Joint detections for different the ET design

Delta: 10 km or 15 km

2L misaligned: 15 km or 20 km

Samuele Ronchini, PennState University

$\Delta 10 \, km < \Delta 15 \, km \sim 2L \, 15 \, km < 2L \, 20 \, km$

Joint GW + afterglow emission

Full (HFLF cryo) sensitivity detectors

Instrument	$\Delta 10$	$\Delta 15$	$2L \ 15$	2L 20
THESEUS-SXI survey	10^{+3}_{-2}	13^{+3}_{-4}	12^{+3}_{-3}	12^{+3}_{-3}
THESEUS-(SXI+XGIS) survey	21^{+6}_{-7}	21^{+8}_{-6}	20^{+7}_{-5}	21^{+7}_{-7}

The ET design does not impact sensibly the joint detection efficiency with WFXray telescopes

Optimize the synergy with Swift-like telescopes

Some GRBs potentially detectable by Swift-BAT are missed because, e.g.:

- occurring close to the edge of the coded mask
- Occurring during slew
- Located out of the FOV

 $P(det|F > F_{th}) < 100$

Samuele Ronchini, PennState University

Tohuvavohu et al. 2020

- GW trigger
- 2. Swift-BAT does not trigger
- 3. The GUANO analysis reveals a significant event, providing arcmin localization
- 4. EM follow up

GUANO workflow and results

- compact binary mergers at cosmological distances
- with ground-based telescopes
- signal is higher
- models of emission
- localizing the EM counterpart

• The remarkable capabilities of next generation GW detectors will allow us to probe

• The existence of wide field X-ray and γ -ray monitors in the next decades will be crucial, in order to localize the EM counterpart and possibly identify the host galaxy

• It is necessary to define an optimal strategy to select GW events, based on the estimation of the GW parameters, for which the detection probability of the EM

• The developed methodology for the estimation of GW+EM detection is highly **versatile** \Rightarrow applicable to different combinations of instruments and for different

• Low-latency analysis with pipelines like GUANO can further enhance the detection potential of Swift-like instruments, maximizing the probability of detecting and

Thank you!

Samuele Ronchini, PennState University

Pre-merger sky localisation and VHE from sGRBs

Samuele Ronchini, PennState University

GRB at the moment of the merger, allowing to detect possible very-high energy emission during the prompt phase

Pre-merger sky localisation and VHE from sGRBs

Samuele Ronchini, PennState University

XIII Einstein Telescope Symposium, 8th-12th May 2023

~ 30 s slewing time

Pre-merger localization with Swift-like telescopes in the ET era

spacecraft slew

Samuele Ronchini, PennState University

