

Seed black holes: Synergy between ET and LISA

Matteo Bonetti

On Behalf of: Alberto Mangiagli, Rosa Valiante, Monica Colpi, Raffaella Schneider, Giulia Cerini, Stephen Fairhurst, Francesco Haardt, Cameron Mills, Alberto Sesana

ET Symposium, 8-12 May 2023

Observation evidences

Massive quasars at high redshift

- J0100, $M_{\rm BH} \simeq 10^{10}$ @ z = 6.3 (Wu+15)
- J1342, $M_{\rm BH} \sim 10^9$ @ z = 7.54 (Banados+20)

Black hole mass spectrum

• Stellar BHs $\begin{cases}
M/M_{\odot} \in [5, 100] \\
Massive stars
\end{cases}$

Massive BHs

 $\begin{cases} M/M_{\odot} \in [10^5, 10^{10}] \\ Accretion \& \text{ growth of DM halos} \end{cases}$

Seed BHs formation channels

Overview

How can we observe this population of BHs?

- Next generation of EM facilities (SKA, JWST, ELT, Athena, Lynx)
- Third generation GW interferometers (ET, CE)
- Space interferometers (LISA, Decigo, TianQin)

Aims:

- Formation site of first seed BHs
- Growth across cosmic history (accretion/merger)
- Formation of BHBs at high redshift

Overview

Aims:

- Formation site of first seed BHs
- Growth across cosmic history (accretion/merger)
- Formation of BHBs at high redshift

Valiante+21 MNRAS 500, 4095

- Semi-Analytical model GAMETE/QSO DUST (Valiante+16, 18)
- Prescription for dynamics close to merger (Bonetti+16, 18)

General framework

Valiante et al. 2011, 2014, 2016, 2018, 2020 Pezzulli et al. 2016, 2017; Sassano et al. Subm.;

Seeds across cosmic epochs

EM emission from seed BHs

Light seeds

Heavy seeds

No signature at z > 5 by any EM facilities

JWST, Athena and Lynx detections out to z \sim 16

ET capabilities

Maggiore et al. 2020

Face on, equal mass binaries at zenith

Sweet spot to observe MBH seeds

Average over sky position and orientation

BH binaries at cosmic dawn

Light/heavy seed form in pristine DM halos BHs pair during halo major mergers ($\mu > 1:4$) Coalescence after triple interaction with another BHs

BH binaries at cosmic dawn

Main findings: Not-grown light seeds merge down to z = 3 & MBH binaries along the pathway to SMBH

GW Observations

Detectable with ET and LISA
Rates
$$(S/N > 8) \sim \begin{cases} 11 \text{ yr}^{-1} \text{ for ET} \\ 19 \text{ yr}^{-1} \text{ for LISA} \end{cases}$$

Statistical inference of mass distribution/relative occurrence of earliest BH mergers provided by combined ET and LISA observations will offer unique insight onto the formation and growth history of MBHs

Conclusions

For EM observations . . .

If seed BHs accrete \rightarrow Athena, JWST and Lynx will detect them

Conclusions

For EM observations . . .

With GW detectors . . .

- LISA will detect MBHBs from heavy seed already at z = 15
- 3G detectors will detect light seeds merging at z > 5

If seed BHs accrete \rightarrow Athena, JWST and Lynx will detect them

