

Startup di: SAPIENZA UNIVERSITÀ DI ROMA

XIII ET Symposium

Tunnels excavation methods for the ET project and spoil reuse alternatives

Cagliari, May 8th - 12th 2023

 T10 – Triangular shape 10 km:

3 tunnels of about 10 km each, placed at about 60° from each other and at an average depth of about 250 m.

in alternative:

 L20 – L shape 20 km:
2 tunnels of about 20 km each, approximately perpendicular to each other and at an average depth of about 250 m.

 T10 – Triangular shape 10 km: granodiorite 40%

mica schists 32%

orthogneiss 28%

in alternative:

L20 – L shape 20 km: granodiorite 60% mica schists 35% orthogneiss 5%

G.L. Cardello*, V. Longo, G. Oggiano University of Sassari, Italy Nuoro ET meeting, November 2021 *glcardello@uniss.it

metasandstone of the Bt-zone

LUL

OGG Fine grained orthogneiss with mica

factors affecting the choice of tunnel method:

- tunnel design parameters: diameter, length, inclination and shape;
- rock mass characteristics: strength, geological features, abrasiveness, hydrogeology and rock mass rating;
- performance factors: rate of advance, boreability, overbreak, support requirements and skill of the crew;
- contract related factors: environmental and safety constraints, cost and quality.

drill & blast

TBM

Macias J. & Bruland A. <i>D&B versus TBM: Review of the</i> parameters for a right choice of the excavation method, 2014		drill & blast	TBM
	geometry	"any" shape	circular
project design	length	shorter (optimal 3 km)	longer (5-25 km)
	start-up time	5-6 months	6-12 months
	niches and branch tunnels	less problematic	more problematic
	safety	lower	higher
health, safety and working environment	storage and handling explosives	accident risk	avoided
	rock support installation	no protected area	protected area
	working environment	toxic gases	dust
	advance rate	lower	higher (1.5-6 times)
advance rates	prediction advance rate	better	uncertain
	rock mass influence	lower	much higher
flexibility	profile	high	not
	layout	high	very low
	advance in crushed zones	easier	very difficult
	profile variability in construction	high	fairly limited

Macias J. & Bruland A. <i>D&B versus TBM: Review of the</i> parameters for a right choice of the excavation method, 2014		drill & blast	TBM	
	ground stability	lower	higher	
ground stability	water inflow under pressure	more suitable	less suitable	
	rock stress conditions	lower delay risk	higher delay risk	
	rock support required	increased, less predictable	reduced (30-90%), more predictable	
	excavation variations	great variability	no variability	
oporation and	operation	cyclical	continuous	
operation and	construction crow	all skills required, more	less skills required, easier	
construction crew	construction crew	difficult training	training	
constructions costs	design cost	lower	higher	
	initial investment	lower	higher	
	construction costs	not vary very much	highly variable	
	life time cost	higher	significantly lower	
	overbreak	higher (15-25 cm)	much lower (<10 cm)	
tunnel profile	tunnel profile quality	difficult	nearly total	
	filling concrete	high extra cost	limited extra cost	
	concrete lining	less predictable	more predictable	
	noise and vibrations	higher	significantly lower	
environmental disturbance	environmental impact	more difficult acceptable	easier acceptable	
	blasting fumes	continuously	not	
	contamination	not possible to avoid	potential reduction	

ET Project – Estimated time

hypothesis:

- TBM technology (Single Shield or Double Shield);
- average advance rate equal to 12-14 m/day;
- granodiorite, mica schists and orthogneiss as the main geological units;
- excluding the access tunnels

ne access tunnels				
	2 TBM SS	3 TBM SS	2 TBM DS	3 TBM DS
configuration	years	years	years	years
T10	5.3	2.4	4.5	2
T15	7.7	3.6	6.5	3
L15	3.6	-	3	_
L20	4.8	-	4	-

ET Project – Estimated volume

	configuration T10		configuration L20	
	excavated volume (10 ⁶ m ³)	muck volume* (10 ⁶ m ³)	excavated volume (10 ⁶ m ³)	muck volume* (10 ⁶ m ³)
surface excavations	-	-	-	-
caverns (drill&blast)	1.1	1.3	0.5	0.6
portals/connections/service tunnels	0.7	0.9	0.3	0.4
shafts	0.03	0.04	0.07	0.1
access tunnels**	1.1	1.3	1.1	1.3
main tunnels	1.4	1.7	1.5	1.7
TOTAL	4.4	5.3	3.5	4.2

*muck volume is determined as 1.2 times the excavated volume

**since the estimated volume obtained from the excavation of the access tunnels is a high percentage of the total volume, it's important to carefully choose their excavation methodology

ET Project – Spoil reuse

for the promotion of sustainable development (as envisaged by the 2030 Agenda of the UN General Assembly and promoted by the UE Circular Economy Action Plan) the **reuse of excavated soils and rocks plays an increasingly important role** in the evaluation of a project

the main steps of the spoil reuse process are:

✓ <u>chemical analyses</u> and verifications according to the Italian legislation (D.P.R. 120/2017)

✓ <u>definition of suitable reuse options</u> based on the characteristics of the excavated material (grain size,

volumes, ...)

in-situ reuse

effective exclusion from the field of application of the waste legislation (art. 185 del D.Lgs.152/2006)

ex-situ reuse

management as a "by-product" (art. 184-bis del D.Lgs.152/2006)

waste disposal site

already adopted and studied solutions, high feasibility, no innovation and low added value

backfill	acceptable grain size with specific precautions but less effective can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
road embankments	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
morphological reprofiling	acceptable grain size with specific precautions but less effective can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
slope stability	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
rock-fall barrier	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)

partially tested and studied solutions, good feasibility, innovation and added value, possibility of optimization

filler for backfilling mortars	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
pea gravel	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
aggregate CLS	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)
road paving aggregates	optimal grain size can be used without particular processing if necessary, other elements must be included (i.e. cement, lime, fibers,)

promising solutions, high feasibility, high innovation and high added value

cement raw materials	optimal grain size other elements must be included (i.e. cement, lime, fibers,) other processes other than mixing are required (i.e. cooking or micronization)
geopolymers	acceptable grain size with specific precautions or but less effective other processes other than mixing are required (i.e. cooking or micronization)

Cagliari, May 8th - 12th 2023 XIII ET Symposium

Tunnels excavation methods for the ET project and spoil reuse alternatives

study carried out by

GEEG (Anita Di Giulio, Sara Mangifesta and Diego Sebastiani)

within the activity coordinated by

DICEA (prof. Maria Marsella)

in collaboration with

anita.digiulio@geeg.it

sara.mangifesta@geeg.it

diego.sebastiani@geeg.it

www.geeg.it

