

Conceptual Design and Noise Budget of Einstein Telescope

T. Zhang, S. Danilishin for WPIII.1

XIII Einstein Telescope Symposium 09 May, 2023

Goal :

- ✤ Produce a new official current sensitivity curve of ET.
- Recover/revise ET D
- ✤ A chance to reconsider the design

Materials :

- The GWINC model is available at <u>https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget</u>
- The document is at <u>https://www.overleaf.com/read/qjrcqmyvhrkv</u>

Next steps:

- Check the document, add your opinion on git/overleaf, and add references missing.
- ✤ Launch the new sensitivity.

Contents of the document

Current version of the document is available on overleaf: <u>https://www.overleaf.com/1612765838ncdtppyrntrc</u>

Conceptual design and noise budget of Einstein Telescope

ET-0007B-23

Teng Zhang, Stefan Danilishin and many others to be added

Issue: 1

Date: May 6, 2023

Key features of ET design

Underground & Xylophone

- Why we have such designs?
- Underground: Much lower seismic N and seismic NN, namely low infrastructure limit at low frequencies.
- > Xylophone: Sensitivity driven? Technology driven? Risk driven?

HF

4

EINSTEIN

E

Contents of the document

1. Introduction

2. General Description of ET

- 1. ET high-frequency room-temperature interferometer
- 2. ET low-frequency cryogenic interferometer

3. The infrastructure noise of ET

- 1. Seismic noise
- 2. Newtonian noise
- 3. Residual gas noise
- 4. Stray light noise (to be added soon).
- 4. Quantum noise
- 5. Thermal noise of the test masses
 - 1. Substrate thermal noise
 - 2. Coating thermal noise
- 6. Suspension thermal noise
- 7. Tables
- 8. ET noise budget software package

ET sensitivity

General Description of ET

Figure 1: Strain noise budget of the HF detector. Noise traces shown in this figure correspond to a single interferometer with an intersection angle of 90 degrees ("L" shape). Figure 2: Strain noise budget of the LF detector. Noise traces shown in this figure correspond to a single interferometer with an intersection angle of 90 degrees ("L" shape).

EJ

EINSTEIN

EINSTEIN

Έ

The infrastructure noise of ET

 10^{-5}

 10^{-11}

 10^{-2}

Seismic [(m/s)//Hz]

 10^{1}

Seismic noise *

 10^{-5}

 10^{-6}

10-7

 10^{-8}

 10^{-9}

 10^{-10}

 10^{-11}

Seismic [(m/s)//Hz]

- TFs for seismic isolation for LF (currently the 17m version) and HF (Not designed, extracted \succ from ET-D?)
- 90th percentile of borehole data from Sos Enattos site is used for ET sensitivity curve \succ

101

Figure 4: Histogram of horizontal/vertical ground motion measured in the P2 borehole at 264m depth at Sos Enattos site in Sardinia (data from October 1, 2021 to December 31, 2021). The white lines indicate the 10th/50th/90th percentiles. The solid black line indicates the Rayleigh wave at the surface. The dashed curves represent the Peterson's Low-noise Model and high-noise model.

100

Frequency [Hz]

 10^{-1}

Figure 5: Histogram of horizontal/ vertical ground motion measured in the Terziet borehole at 250 m depth at EMR site (data from September 30, 2019) to September 14, 2020). The white lines indicate the 10th/50th/90th percentiles. The solid black line indicates the Rayleigh wave at the surface. The dashed curves represent the Peterson's Low-noise Model and high-noise model.

 10^{-1}

100

Frequency [Hz]

- specifying the coupling in three degrees of freedom, horizontal, vertical, and tilt direction.
- For simplicity, the ground tilt and horizontal and vertical displacements are assumed to be uncorrelated. Different test mass is uncorrelated.

EINSTEIN

The infrastructure noise of ET

- Newtonian noise
 - Included projections for body waves, Rayleigh waves, cavern acoustic, and atmospheric disturbances
 - > A factor of 3 suppression factor (amplitude) is assumed for ETLF

$$S_{\rm bw}^{h}(f) = \left(\frac{4}{3}\pi G\rho_{0,\rm ug}\right)^{2} (3p+1)S_{\rm bw}(\xi_{x};f)\frac{4}{L^{2}(2\pi f)^{4}}$$

We assume 1/3 compressional wave in power spectral density.

Cavern acoustic spectrum assumes the median level of Kagra, which level spectrum should we use?)

E

Figure 6: Newtonian noise budget of LF detector with seismic waves data from Sardinia site. A factor of 3 mitigation of amplitude noise is included.

- Residual gas noise
 - Both the scattering noise component and the gas damping component of the residual gas noise are included in the noise budget.

10

- > LF chamber pressure: 3e-8 Pa, HF chamber pressure: 3e-7 Pa
- ➢ LF tube pressure: 1.5e-8 Pa, HF tube pressure: 1.5e-8 Pa

Figure 8: Residual gas noise budget of HF detector.

Figure 9: Residual gas noise budget of LF detector.

Table 1: Infrastructure parameters of ET detectors.							
Parameter	Units	HF detector	LF detector				
Detector depth	m	250	250				
Cavern diameter	m	25	25				
Arms length	km	10	10				
Residual H_2 parameters							
Beamtube pressure	Pa	1×10^{-8}	1×10^{-8}				
ChamberPressure	Pa	2×10^{-7}	2×10^{-8}				
Mass	kg	3.35×10^{-27}	3.35×10^{-27}				
Polarizability	m^3	7.87×10^{-31}	7.87×10^{-31}				
Residual N_2 parameters							
Beamtube pressure	Pa	$2.5 imes 10^{-10}$	$2.5 imes 10^{-10}$				
ChamberPressure	Pa	$5 imes 10^{-9}$	$5 imes 10^{-10}$				
Mass	kg	4.65×10^{-26}	4.65×10^{-26}				
Polarizability	m^3	1.71×10^{-30}	1.71×10^{-30}				
Residual H ₂ O parameters							
Beamtube pressure	Pa	5×10^{-9}	5×10^{-9}				
ChamberPressure	Pa	1×10^{-7}	1×10^{-8}				
Mass	kg	2.99×10^{-26}	2.99×10^{-26}				
Polarizability	m^3	1.5×10^{-30}	1.5×10^{-30}				
Residual O_2 parameters							
Beamtube pressure	Pa	2.5×10^{-10}	2.5×10^{-10}				
ChamberPressure	Pa	5×10^{-9}	5×10^{-10}				
Mass	kg	5.31×10^{-26}	5.31×10^{-26}				
Polarizability	m ³	1.56×10^{-30}	1.56×10^{-30}				

E'

EINSTEIN

Quantum noise

No mismatch included yet

Table 2: Parameters	for quantum nois	e model of ET detecto	ors.
Parameter	Units	HF Detector	LF Detector
Interferometer configuration	Tuned	dual-recycled Fabry-Pe	erot-Michelson
Laser wavelength	nm	1064	1550
Laser power	W	500.0	1.7
Arms length	km	10	10
Arms circulating power	kW	3000	18
ITM transmissivity	%	0.7	0.7
Arm finesse		888	888
Arm half-bandwidth	Hz	8.3	8.3
Pow	er recycling cavit	y (SEC)	
SEM transmissivity	%	0.045	0.026
Signa	l extraction cavi	ty (SEC)	
SEM transmissivity	%	5.0	20
SEC tunephase	rad	0.0	0.75
SEC length	m	100	100
	Squeezing inject	ion	
Squeezing type	F	requency-dependent so	queezing
Injected squeezing	dB	18	10
Injected squeezing angle	rad	0.00	0.3
Filter cavity length	m	1000	1000/1000
Filter cavity input transmissivity	ppm	1773	357.1/138
Filter cavity half-bandwidth	Hz	21.16	4.26/1.65
Filter cavity detuning	Hz	-21.15	19.51/-7.65
	Readout loss		
Photodetector Inefficiency	%	1	1
Faraday isolator	%	1	1
Output mode cleaner	%	1	1
Inter	nal loss of interfe	erometer	
ETM transmissivity	ppm	5.0	5
Arm Loss per mirror	ppm	37.5	20
Arm round trip loss	ppm	80	45
SEC loss	ppm	1000.0	1000
S	queezing injection	n loss	
OPA cavity	%	1.0	1
Faraday isolators	%	2	3
FC end mirror transmittance	ppm	5	5
FC round-trip loss	ppm	45	20
	Phase noise		
Squeezer phase noise RMS	rad	10e-3	10e-3
Local oscillator angle noise RMS	rad	10e-3	10e-3
Filter cavity length RMS	pm	1	1/1
SEC length RMS	pm	1	1

SEC length is chosen to be 100m, giving potential to explore couple-cavity resonance @ 2kHz.

Quantum noise

ET EINSTEIN TELESCOPE

No mismatch included yet

Figure 11: Quantum noise budget of LF detector.

Squeezing is maginely helpful and can make it worse.

Quantum noise

ET EINSTEIN TELESCOPE

Do we need to fine-tune and choose the "optimal squeezing" and "optimal parameter"?

- → 12 dB optimal: 'Ti': 2.05e-4 ,'Ti': 1.08e-4
- → 10 dB optimal: 'Ti': 1.71e-4, 'Ti': 9.18e-5
- → 10 dB, choice :'Ti': 1.38e-4, 'Ti': 3.57e-4

We may **not** need to adopt the "optimal" choice, because

- 1. Technical difficulties.
- 2. It relays on artificially estimated imperfections.
- The figure of merit is almost valid for the BNS horizon. ET emphasizes on LF and larger masses.

ET EINSTEIN TELESCOPE

- Substrate thermal noise
 - Three main contributors: Brownian thermal noise, Thermo-Elastic noise and ITM Thermo-Refractive noise are included in the estimate.
 - ➤ ETHF uses fused silica test masses of 62cm x 30cm and 200kg
 - ► ETLF uses silicon test masses of 45cm x 57cm and 211kg (production limited)

Substrate thermal noise

- ➤ ETHF uses fused silica test masses of 62cm x 30cm and 200kg.
- > With such large scale mirror, the bulk mode will enter the detection band.

EINSTEIN

E

Parameter	Units	HF Detector	LF Detector			
General optical parameters of TM						
Mirror radius	cm	31.0	22.5			
Mirror thickness	cm	30.0	57			
Laser beam radius	cm	12.0	9			
TM Temperature	K	290.0	10			
Substrate parameters						
Substrate material		Silica	Silicon			
Substrate density	$ m kg/m^3$	2200.0	2331			
Young's modulus	Pa	$7.3 imes 10^{10}$	$1.6 imes 10^{11}$			
Poisson's ratio	1	0.2	0.2			
Specific heat	$J/(kg \cdot K)$	739	0.276			
Thermal conductivity	$W/(m \cdot K)$	1.4	1000			
Thermal expansion coefficient	1/K	$3.9 imes10^{-7}$	4.8×10^{-10}			
Refractive index	1	1.4	3.5			
Thermore fractive coefficient, dn/dT	[1/K]	8.5×10^{-6}	5×10^{-7}			
Loss angle		$7.6 imes 10^{-12} imes f^{0.77}$	$3 \times 10^{-13} \times f$			

Table 3: Parameters of test masses of ET detectors.

- Coating thermal noise
 - > Two main contributors: Coating Brownian and Coating Thermo-Optic
 - ETHF coating applies traditional Ta2O5/SiO2 pair with 4 times lower mechanical loss than aLIGO/aVirgo coatings.
 - ETLF applies the use multi-material coating design with two top bi-layers of Ta2O5/SiO2 (with low optical absorption) and the rest of the stack of a-Si/SiO2:HfO2 bi-layers (with low mechanical loss)

Figure 14: Coating thermal noise budget of HF detector.

Figure 15: Coating thermal noise budget of LF detector.

EINSTEIN

E

Thermal noise of the test masses

Table 4: Parameters of coatings of ET HF detector.

Parameter	Units	HF Detector	
ITM coating bi-layers		8	
ETM coating bi-layers		17	
High-n layers material		TBD	
Each layer thickness	Wavelength	0.25	
Young's modulus	Pa	$1.2 imes 10^{11}$	
Poisson's ratio	1	0.29	
Volumetric heat capacity	$J/(m^3 \cdot K)$	$2.1 imes 10^6$	
Thermal conductivity	$W/(m \cdot K)$	33.0	
Thermal expansion coefficient	1/K	$3.6 imes10^{-6}$	
Refractive index		2.09	
Thermorefractive coefficient	1/K	1.4×10^{-5}	
Loss angle	1	$9.0 imes 10^{-5} imes f^{0.10}$	
Low-n layers material	TBD		
Layer optical thickness	Wavelength	0.25	
Young's modulus	Pa	$7.0 imes 10^{10}$	
Poisson's ratio	1	0.19	
Volumetric heat capacity	$J/(m^3 \cdot K)$	$1.6 imes 10^6$	
Thermal conductivity	$W/(m \cdot K)$	1.4	
Thermal expansion coefficient	1/K	5.1×10^{-7}	
Refractive index	1	1.45	
Thermorefractive coefficient	1/K	$8.0 imes 10^{-6}$	
Loss angle	1	$1.2 imes 10^{-5} imes f^{0.00}$	

Thermal noise of the test masses

Table 6: Parameters of coatings of ET LF detector.				
Parameter	Units	LF Detector		
Layer material		Ta_2O_5		
Young's modulus	Pa	1.4×10^{11}		
Poisson's ratio	1	0.28		
Specific heat	$J/(kg \cdot K)$	2.1×10^6		
Thermal expansion coefficient	1/K	$3.6 imes 10^{-6}$		
Thermorefractive coefficient, dn/dT	1/K	1.4×10^{-5}		
Thermal conductivity	W/(m·K)	33.00		
Refractive index	1	2.05		
Loss angle	1	$5.0 imes 10^{-4}$		
Layer material	SiO ₂			
Young's modulus	Pa	$7.2 imes 10^{10}$		
Poisson's ratio	1	0.17		
Specific heat	J/(kg·K)	1.6×10^{6}		
Thermal expansion coefficient	1/K	5.1×10^{-7}		
Thermorefractive coefficient, dn/dT	1/K	$8.0 imes 10^{-6}$		
Thermal conductivity	W/(m·K)	1.38		
Refractive index	1	1.44		
Loss angle	1	8.5×10^{-4}		
Layer material		SiO_2 : HfO ₂		
Young's modulus	Pa	$1.8 imes 10^{11}$		
Poisson's ratio	1	0.20		
Specific heat	$J/(kg \cdot K)$	$1.6 imes 10^6$		
Thermal expansion coefficient	1/K	$5.1 imes 10^{-7}$		
Thermorefractive coefficient, dn/dT	1/K	$8.0 imes 10^{-6}$		
Thermal conductivity	$W/(m \cdot K)$	1.38		
Refractive index	1	1.91		
Loss angle	1	$3.8 imes10^{-4}$		
Layer material	a-Si			
Young's modulus	Pa	$1.5 imes 10^{11}$		
Poisson's ratio	1	0.20		
Specific heat	$J/(kg \cdot K)$	$2.1 imes 10^6$		
Thermal expansion coefficient	1/K	$3.6 imes10^{-6}$		
Thermore fractive coefficient, dn/dT	1/K	$1.4 imes 10^{-5}$		
Thermal conductivity	$W/(m \cdot K)$	33.00		
Refractive index	1	3.48		
Loss angle	1	1.7×10^{-5}		

- Suspension TN is calculated for the payload stage, which is following the Virgo design of *double pendulum*
- Two main contributors: Brownian noise from the bulk and surface loss of the wires and Thermo-Elastic noise
- ETHF:
 - Tapered fused silica suspension fiber of length 0.7m (5cm+0.6m+5cm) for test mass (Not studied by the collaboration?), 0.6m *cylindrical* for marionette stage.
 - > Tapered fiber profile for cancellation of thermo-elastic noise
 - Stress on each fiber is 770 MPa, a factor of 6 safety margin vs. breaking stress
- ETLF:
 - Aplies silicon cylindrical rods of length 1.2m for suspending the test mass and of length 1m for the marionette
 - Temperature gradients are not accounted for in the current model. Uniform 10K temperature along the suspension rods is assumed
 - Maximal stress on each fiber is 35 MPa, a factor of 6 safety margin vs. breaking stress (200-300 Pa. (In ISB workshop, we discussed the safety margin)

Figure 16: Suspension thermal noise budget of HF detector.

Figure 17: Suspension thermal noise budget of LF detector.

	Temperature	Bulk loss	Surface loss	Elastic loss	Break stress
Silica	290K	4.1e-10	6.5e-12m	Cancelled	~4.2Gpa
Silicon	10-18K	1e-9	0.5e-12m	Low TEC	200-300MPa

EINSTEIN

EJ

--- Marionette, Horizontal

ET Total

103

 10^{4}

Marionette, Vertical

14
EINSTEIN
- Morris
TELESCOPE
the manual (-) and a provide of Co

	or babponoron pa	groud of fill detector.			
Parameter	Units	HF Detector			
Payload Design	Double pendulum (marionette + test mass)				
Temperature	K	290.0			
SiO ₂	parameters at 2	290K			
Density	kg/m^3	$2.2 imes 10^3$			
Heat capacity	$J/(kg\cdot K)$	772			
Thermal conductivity	$W/(m \cdot K)$	1.38			
Young's modulus	Pa	$7.20 imes 10^{10}$			
Thermal expansion coefficient	1/K	$3.9 imes 10^{-7}$			
Thermo-elastic coefficient, $dY/dT/Y$	1/K	1.52×10^{-4}			
Mechanical loss angle	1	4.1×10^{-10}			
Dissipation depth	mm	15			
Test mass stage parameters					
Mass	kg	200			
Fiber Material		SiO_2			
Number of wires	1	4			
Fiber stress	MPa	770			
Fiber Shape	Tapperd				
Head length	mm	50			
Middle length	m	0.6			
End length	mm	50			
Head diameter	mm	1.8			
Middle diameter	mm	0.9			
End diameter	mm	1.8			
Mario	nette stage para	meters			
Mass	kg	200			
Fiber Material	SiO ₂				
Number of wires	1	1			
Fiber stress	MPa	740			
Fiber Shape		Cylindrical			
Fiber length	m	0.6			
Fiber diameter	mm	2.6			

Table 1. I arameters of suspension payload of III. detection	Table 7:	Parameters	of	suspension	payload	of	\mathbf{HF}	detecto
--	----------	------------	----	------------	---------	----	---------------	---------

Table 8: Parameters of suspension payload of LF detector.						
Parameter	Units	LF Detector				
Payload Design	Double pendulum (marionette + test mass)					
Temperature	K	10				
Silicon parameters at 10 K						
Density	$ m kg/m^3$	$2.3 imes10^3$				
Heat capacity	$J/(kg\cdot K)$	0.276				
Thermal conductivity	$W/(m \cdot K)$	2110				
Young's modulus	Pa	$1.32 imes 10^{11}$				
Thermal expansion coefficient	1/K	$8.1 imes 10^{-10}$				
Thermo-elastic coefficient, $dY/dT/Y$	1/K	?				
Mechanical loss angle	1	1.0×10^{-9}				
Dissipation depth	mm	0.5				
Test mass stage parameters						
Mass	kg	211				
Fiber material		Silicon				
Fiber shape	Cylindrical					
Number of fibers	1	4				
Fiber stress	Mpa	34				
Fiber length	m	1.2				
Fiber diameter	mm	4.4				
Mario	nette stage para	meters				
Mass	$M \mathrm{kg}$	211				
Fiber Material	Silicon					
Fiber shape	Cylindrical					
Number of fibers	1	1				
Fiber stress	Mpa	35				
Fiber length	m	1.0				
Fiber diameter	mm	12.4				

Summary of changes/improvements from ET D

- > Include loss and phase noise budget in quantum noise modeling
- > Apply suspension thermal noise model and payload design.
- > Detailed budget of Seismic N and NN based on the measurement at sites.
- Include gas-damping noise.
- > Optimized power recycling cavity gain.

ET HF

- Improved suspension thermal noise (from tapped fiber geometry)
- Update SEC length from 30m to 100m, to be more realistic and allows to explore sensitivity @2kHz only by replacing SEM.
- ◆ Increase the FC length from 300m to 1km, in order to benefit at the LF-HF joint frequency.

ET LF

- Optical parameters update following HF sensitivity update.
- FC length from 10km to 1km (cost driven)
- Mirror thermoelastic & refractive noise are modeled beyond adiabatic approximation.
- Update the coating to multi material design.

Further potential improvements

- 1. LF FC from 1km to 10km.
- 2. Carven acoustic NN can be a factor of 3 lower.
- 3. Implement fiber stress, a factor of 3 safe margin vs. the break stress for LF suspension. (Assumed in <u>https://apps.et-gw.eu/tds/?content=3&r=18267</u>)

Sensitivity & horizon

