
How COMPSs can be
useful at ET-EIB

Raül Sirvent

Workflows & Distributed Computing Group

May 2023 Barcelona

ET-EIB Workshop Aachen (March 2023)

• Intro: “Provide a software framework allowing traceability and
reproducibility, efficient job submission and data access” –
COMPSs provenance recording, COMPSs runtime system

• Division 1: “We should promote grid computing from the
beginning to not run into the same issues LIGO and Virgo are
facing with pipelines that can not run on the grid, because they
rely on features that are not part of the grid infrastructure” –
COMPSs applications’ portability

• Need to understand better the use cases to see real
possibilities

2

Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. Programming models and APIs to run with
GPUs, NVMs (Non-Volatile Memories)

• Coarse grain: e.g. APIs to deploy in Clouds
• Difficult for programmers

• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I

should? (Efficiency)
• Tune your application for each architecture (or cluster)

• E.g. partitioning data among nodes

3

Motivation

• Create tools that make developers’ life easier
• Allow developers to focus on their problem
• Intermediate layer: let the difficult parts to those tools

• Act on behalf of the user
• Distribute the work through resources
• Deal with architecture specifics
• Automatically improve performance

• Tools for visualization
• Monitoring
• Performance analysis

• Integration of computational workloads, with machine learning
and data analytics

4

COMPSs
Programming Model
and Runtime Sytem

Programming with PyCOMPSs/COMPSs
• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Task based: task is the unit of work

• Builds a task graph at runtime
• Express potential concurrency
• Exploitation of parallelism

• Offers a shared memory illusion to
applications in a distributed system
• The application can address larger

data storage space:
• Support for Big Data apps

• Simple linear address space
• Agnostic of computing

platform
• Runtime takes all scheduling

and data transfer decisions

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
for i in range(MSIZE):
for j in range(MSIZE):

for k in range(MSIZE):
multiply (A[i][k], B[k][j], C[i][j])

6

COMPSs runtime
• PyCOMPSs/COMPSs applications executed in distributed mode following the

master-worker paradigm

• Sequential execution starts in master node

• Tasks are offloaded to worker nodes

• All data scheduling decisions and data transfers are performed by the runtime

Task Dependecy Graph
Computing infrastructure

COMPSs
Runtime Resource Mgmt.

Task Execution
SchedulingTask

Analysis
Data Mgmt.

Monitoring

Python
binding

Files,
objects

Tasks

Annotated
code

Custom Loader

Task
interception

Python
C/C++

Java

7

PyCOMPSs development environment

• Runtime monitor
• Paraver traces (HPC!!!)
• Jupyter-notebooks integration

8

COMPSs Execution
Environments
(Portability)

Basic Execution Environments

• Interactive Computing Nodes
• Clusters (interaction with batch jobs systems)
• Distributed: Grids/Clouds (interaction with Grid/Cloud Provider

APIs)

10

COMPSs @ Interactive Hosts
• Typical setup:

• Master node: main program (+ master runtime)
• Worker nodes: tasks (+ worker runtime)

Communication Adaptor

GAT

COMPSs Master RT

App main program

COMPSs Worker RT

Task code

Master

Workers

Described by resources.xml files

NIO

11

COMPSs@Cluster
• Execution divided in two phases

• Launch scripts queue a whole COMPSs app execution
• Actual execution starts when reservation is obtained

Cluster Compute
Nodes

Cluster Login Node

Queue System (LSF, PBS, ...)

enqueue_compss Automatically
generated XML files

Application

COMPSs RT

Communication Adaptor

NIO

12

COMPSs@Grid/Cloud

• Execution of COMPSs applications in Grids/Clouds
• Select the connector to interact with the Grid/Cloud provider
• Adaptor to communicate VMs (NIO if provider supports firewall management,

GAT if only ssh)

Create/delete
VMs

Execute /Copy

Application

COMPSs Runtime
Cloud Connector

jClouds rOCCI

Comm. Adaptor

NIO GAT

Provider
API

https://www.youtube.com/watch?v=XGaqUje_2zY 13

https://www.youtube.com/watch?v=XGaqUje_2zY

COMPSs runtime: containers
• Two alternatives

• Whole application deployed as a container
• Support for Docker, Singularity and other container engines

• Individual tasks can be in containers

• Support for elasticity
• Transparent to user

• Application launched in
the same way

DockerHub

Docker Compose Docker Swarm

Docker Nodes

Application

runcompss_docker

COMPSs Image
App. Image

Application

14

COMPSs Unique
Advanced Features

for ET

Automatic Workflow Provenance Recording
• Record details of your COMPSs (and dislib)

workflow executions
• Ensure reproducibility and replicability of the

results
• RO-Crate workflow profile format used

(simple and interoperable)

• Usage: -p or --provenance flag with compss run
• Input: Simple YAML file to describe the application and its authors
• Output: Resulting package with: Application source files, Graph image,

Application profiling, RO-Crate metadata file
• RO-Crate metadata includes:

• References to detected inputs and outputs used by the workflow (and their
details), but files are not included (avoid moving large datasets)

• Application details, COMPSs version used, hostname, …

• More info:
https://compss-doc.readthedocs.io/en/stable/Sections/05_Tools/04_Data_Provenance.html

16

https://compss-doc.readthedocs.io/en/stable/Sections/05_Tools/04_Data_Provenance.html

Multiple Task Implementations

• Multiple implementations for a task with the same objective,
but with different constraints (e.g. specific libraries, hardware)

• Transparently, the runtime will invoke the implementation that
fulfils the constraints within each resource

17

@implement(source_class="sourcemodule", method="main_func")
@constraint(app_software="numpy")
@task(returns=list)
def myfunctionWithNumpy(list1, list2):

Operate with the lists using numpy
return resultList

@task(returns=list)
def main_func(list1, list2):

Operate with the lists using built-int functions
return resultList

Failure Management & Dynamic Workflow
• Interface than enables the programmer to give hints about failure

management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE
• Implications on file management:

• I.e, on IGNORE, output files: are generated empty
• Possibility of ignoring part of the execution of the workflow, for

example if a task fails in an unstable device
• Opens the possibility of dynamic workflow behaviour depending

on the actual outcome of the tasks

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS')
def task(file_path):

...
if cond :

raise Exception()

18

Leveraging NUMBA

• Just in time compilation for Python and NumPy code

@task(returns=1)
def ident_loops(x):

r = np.empty_like(x)
n = len(x)
for i in range(n):

r[i] = np.cos(x[i]) ** 2 + np.sin(x[i]) ** 2
return r

@task(returns=1, numba=True)
def ident_loops_jit(x):

r = np.empty_like(x)
n = len(x)
for i in range(n):

r[i] = np.cos(x[i]) ** 2 + np.sin(x[i]) ** 2
return r

19

Data Filtering Tasks (IO Tasks)

@constraint (storageBW=9)
@IO()
@task()
def save(data, itr):

...
f = open(dest, "w")
f.write(data)
f.flush()
...

@task(returns=list)
def compute()

...
for i ...

#some computation
... for j in range(N):

for i in range(48):
c[i] = compute()

for i in range (48):
save(c[i], i*(j+1))

• IO tasks can run in parallel with compute tasks using virtual IO resources

• IO tasks can use a specific amount of BW
Without IO resources

With IO resources

20

Other Potentially
Useful Advanced

Features

Other decorators: Tasks’ constraints

• Constraints enable to define HW or SW features required to execute
a task
• Runtime performs the match-making between the task and the computing

nodes
• Example: Support for multi-core tasks and for tasks with memory constraints
• Support for heterogeneity on the devices in the platform

@constraint (MemorySize=1.0, ProcessorType =”ARM”)
@task (c=INOUT)
def myfunc_other(a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”,
ComputingUnits=“8”)
@task (c=INOUT)
def myfunc(a, b, c):

...

22

Other decorators: linking with other
programming models
• A task can be more than a sequential function

• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically
• Supports for alternative programming models: MPI and OpenMP/OmpSs

• Additional decorators:
• @binary(binary=“app.bin”)
• @ompss(binary=“ompssApp.bin”)
• @mpi(binary=“mpiApp.bin”, runner=“mpirun”, processes=8)

• Can be combined with the @constraint and @implement decorators
@constraint (computingUnits= ”8")
@mpi (runner="mpirun", processes= ”16”, ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...)
def nems(stdOutFile, stdErrFile):

pass

23

Support for data streams

• New interface to support streaming data in tasks
• Task-flow and data-flow tasks live together in PyCOMPSs/COMPSs

workflows
• Data-flow tasks persist while streams are not closed

• Parameters can be one/multiple streams and non-streamed

• Runtime implementation based on Kafka
@task(fds=STREAM_OUT)
def sensor(fds):

...
while not end():

data = get_data_from_sensor()
f.write(data)

fds.close()

@task(fds_sensor=STREAM_IN, filtered=OUT)
def filter(fds_sensor, filtered):

...
while not fds_sensor.is_closed():

get_and_filter(fds_sensor, filtered)24

Integration with persistent memory
• Programmer may decide to make persistent specific objects in its

code
• Persistent objects are managed same way as regular objects
• Tasks can operate with them

• Objects can be accessed/shared
transparently in a distributed
computing platform

a = SampleClass ()
a.make_persistent()
Print a.func (3, 4)

a.mytask()
compss_barrier()

o = a.another_object

Storage Runtime
Interface

Storage Object
Interface

COMPSs

PyCOMPSs

PyCOMPSs Application

Tensorflow PyTorchdislib MKL

25

Support for elasticity
• Possibility to adapt the computing

infrastructure depending on the
actual workload

• Now also for SLURM managed
systems

• Feature that contributes to a more
effective use of resources

Expanded SLURM Job X
Initial SLURM Job X

Master Node

Main App

m
p
Ss
A
p
p

Compute Node C

COMPSs
Worker

SLURM Manager

COMPSs Runtime

m
p
Ss
A
p
p

Compute Node B

COMPSs
Worker

m
p
Ss
A
p
p

Compute Node A

COMPSs Worker

Task Task

SLURM Connector

Request for a new node

SLURM Job Y

Compute Node N
COMPSs Worker

Task Task

…

…
…

…

Update original job
SLURM creates
the new job

26

Checkpointing
• Mechanism to recover from failures

• Allows the workflow re-execution avoiding the re-execution of finished tasks

• Asynchronous but with Overhead
• Save tasks results in a persistent storage
• Trade-off between performance and time to recover
• Establishing the right checkpoint granularity is important

• 3 mechanisms for automatic checkpointing
• Time: periodically, COMPSs saves the last version produced for every value
• Finished tasks : after the completion of X tasks, COMPSs saves the last

version produced for every value
• Instantiation task groups: Defines groups of tasks, COMPSs saves those data

versions that are a final result of the group

• Indicated by the developer with API
• Extensible Policies

• customize group creations ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔✔ ✔ ✔ ✔ 27

Timeouts and exceptions
• Timeouts can be defined for each task

• Tasks can raise exceptions

• Combined with groups of tasks enables
to cancel the group of tasks on the
occurrence of an exception

• Can be combined to dynamically
make decisions
depending on the actual behavior

@task(file_path=FILE_INOUT)
def comp_task(file_path):

...
raise COMPSsException("Exception

raised")

def test_cancellation(file_name):
try:

with TaskGroup('failedGroup'):
long_task(file_name)
long_task(file_name)
executed_task(file_name)
comp_task(file_name)

except COMPSsException:
print("COMPSsException caught")
write_two(file_name)

write_two(file_name)

@task(file_path=FILE_IN, time_out=200)
def time_out_task (file_path):

...

28

Final notes

Take-away messages

• Sequential programming approach (Java, Python, C++)
• Parallelization at task level
• Transparent data management and remote execution
• Easily integrate legacy applications (binaries, MPI)
• Can operate on different infrastructures:

• Cluster
• Grid
• Cloud (Public/Private)
• Containers

• Dislib for Machine learning on top of PyCOMPSs

30

Further Information
• Project page: http://www.bsc.es/compss

• Virtual Appliance for testing & sample applications
• Tutorials

• YouTube Channel (Demos and Tutorials)
• https://www.youtube.com/@compsuperscalar3152

• Documentation: https://compss-doc.readthedocs.org
• Source Code

https://github.com/bsc-wdc/compss
• Docker Image

https://hub.docker.com/r/compss/compss/
• Applications

https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

31

http://www.bsc.es/compss
https://www.youtube.com/@compsuperscalar3152
https://compss-doc.readthedocs.org/
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss/
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

THANK YOU!

www.bsc.es

support-compss@bsc.es

