
LIGO Computing model
Duncan Macleod

Chair, LSC Computing and Software WG



IGWN Computing model
Duncan Macleod

Chair, LSC Computing and Software WG



IGWN computing 
demand

IGWN computing demand has 
evolved ‘organically’ through Initial 
and Advanced LIGO and Virgo

Initial detectors (plus O1)

● principally HTC ‘offline’ 
workflows

Advanced detectors

● ‘traditional’ offline HTC CPU
● low-latency HTC CPU
● HTC GPU
● HPC CPU
● any of the above in large bursts



IGWN computing 
supply

Similarly, compute provision has 
evolved organically.

Traditionally:

● large, isolated HTC resources 
pledged to the LSC/Virgo

● providers would make their 
resources look like everyone 
else’s

● dedicated hardware for specific 
needs

Now:

● large, isolated HTC pools
● massive, distributed HTC pool
● multiple prioritisation layers



IGWN Computing Model - Offline HTC (CPU+GPU)

For 2G observing, demand is still dominated by 
HTC workflows

Standard workflow model

1. data access/pre-processing
2. highly-parallelisable compute-intensive 

analysis
3. post-processing (final statistics, generating 

figures, HTML, etc) - typically needing 
everything from stage 2.

IGWN Grid infrastructure:

● powered by HTCondor
● multiple technically-independent, 

heterogeneous resource pools all talk to a 
central ‘factory’ that routes each job to any 
execute point (EP) based on its 
requirements

○ no local ‘submit node’
○ no need for large, persistent storage
○ no need for local copies of data

● a few homogeneous Access Points (APs)
○ all users have access
○ large, persistent storage (web server, etc)
○ fast access to data



IGWN Computing Model - Offline HTC bursts

HTC demand is very unpredictable, mainly 
related to scientifically interesting signals in the 
data.

The distributed pool acts as a load balancer 
between the individual computing centres.

The distributed pool also includes opportunistic 
resources from a number of research institutions 
working in other (often related) fields. This relies 
on the generosity of like-minded individuals (so 
we should be prepared to return the favour).

Our total usage on opportunistic resources, 
averaged over time, is small but gives flexibility 
to request more resources than pledged for a 
short time.







IGWN Computing Model - low-latency

Scientific motivation for as-fast-as-possible 
detection and publication of potential signal 
detections

Multiple stages of low-latency processing:

1. distribution of instrumental data
2. calibration and basic data quality analysis
3. distribution of calibrated data
4. signal detection and significance 

calculation
5. localisation and parameter estimation
6. publication (alerts)

Steps 1. and 2. use a small set of dedicated 
resources (absolute priority, no risk of competition) 
running system-level services

Step 3 (which supports 4. and 5.) uses an 
industry-standard data-streaming platform to 
distribute our custom data packets to a wide array of 
receivers

Steps 4. and 5. use the same HTC resource pool as 
offline workflows but with extremely high priority on 
the EP (other jobs keep running, but with limited 
access to system resources)

Step 6 is handled with dedicated resources (mix of 
on-premise, research cloud, commercial cloud)



IGWN Computing Model - HPC

We don’t really have one.

HTCondor supports single-node, multi-core jobs 
extremely well, but…

● not that many high-core-count nodes
● hard and inefficient to defragment a pool 

to make space for very large jobs

HTCondor does support the ‘parallel’ universe, 
but it is not widely deployed or understood 
inside IGWN.

In the end users gain direct access to a ‘native’ 
HPC system at a partner institution and run 
directly on the relevant batch system there 
(commonly: slurm).

HPC demand is growing, so will likely need a 
‘real’ solution for this for O5.



IGWN Computing Model - Data (and software)

The IGWN Grid system relies on systems to 
widely distributed data and software.

For data we use the Open Science Data 
Federation:

● data are published from local ‘origins’
● end user requests a file on the EP
● the request is routed through the nearest 

cache which fetches the data from the 
origin (or a more remote cache) and 
returns it to the user, but caches it for the 
next request

CVMFS can provide a POSIX interface to the 
data that is more familiar to users

Desire to move to a more intuitive access model

● ‘give me data for stream X from time A to 
time B’

● HTCondor figures out where to go, what 
files to read and returns just the data the 
user asked for

Software are distributed in a number of ways:

● user sends the software with the job 
(HTCondor manages the transfers)

● user runs the job in a self-managed 
container

● centrally-managed ‘IGWN’ software 
distributions are distributed using CVMFS

https://osg-htc.org/services/osdf.html
https://osg-htc.org/services/osdf.html


Summary

IGWN Computing Model has 
evolved over time

Still dominated by ‘traditional’ offline 
HTC workflows

HTCondor-enabled distributed grid 
platform simplifies connecting 
resources and managing load

Low-latency a special case

HPC using ad-hoc solutions


