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GW data analysis needs waveform models

e Searches -> detection:

what is the statistical evidence of seeing a signal above background,
fixed template bank or unmodeled searches (detect coherent excess

power, e.d. for supernovae).

o [est pipeline sensitivity with waveform injections -> astrophysical rates

e Bayesian parameter estimation for signals that can be modelled,

such as CBCs - based on matched filtering.

vary templates with random walks in parameter space, using MCMC ...
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e|dentification of sources
'S limited by detector
sensitivity + accuracy of
waveforms.

=> need accurate
waveform models across
astrophysically plausible
parameter space.

PE results for GW190412
[Colleoni+, PRD 103, 024029 (2021)]



CBC: Need perturbative approach
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Waveform models: synthesised from NR, PN, EOB, GSF...

e 3 main approaches have developed in the LVK context

e EOB, IMRPhenom, ROM/surrogates

e Development of main “current” model families has become part of the LVK,
need to broaden to ET (and LISA)

e Address trade-offs in different ways - 3 main strategies with different emphasis.
e effective one body (EOB) - analytical methods to compute waves from dynamics

e model energy + flux/wave amplitude of a particle in effective metric => integrate ODEs numerically.

e Slow - need a fast model of the phenomenological EOB model, or fast PE, e.g. with ML
e “Surrogate models” - algorithms to interpolate large parameter spaces

e Fast evaluation of EOB or NR data directly.
e phenomenological models - model waveform directly

® piecewise closed form expressions - extreme compression of information, fast.
used by LIGO-Virgo for all events to date.
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Choose coordinates for spacetime =>

~ 10 coupled nonlinear wave egs., complex sources.

GR is a gauge theory like E&M, Yang-Mills -> constraints

- First orbit + GWs:
Pretorius 2005

+ Surprise breakthrough after
4 decades of unstable
formulations and problems
to excise the BH
singularity.

+ => (Gold-rush of improved
methods and results

- Detection of first GW with
inspiral-merger-ringdown
waveform models 10
years later.
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“Holy grail” problem: numerically evolve black holes
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Choose coordinates for spacetime =>

~ 10 coupled nonlinear wave egs., complex sources.

GR is a gauge theory like E&M, Yang-Mills -> constraints

First orbit + GWs:
Pretorius 2005

+ Surprise breakthrough after
4 decades of unstable
formulations and problems
to excise the BH
singularity.

+ => (Gold-rush of improved
methods and results

Detection of first GW with
inspiral-merger-ringdown
waveform models 10
years later.
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Extreme matter: Neutron stars in binaries

- BNS: Small mass - long waveforms in band

0ossibly during inspiral.

* Need fast and accurate models for thousands of cycles
* Dynamical tides, EM emissions during/atter merger,

* post-merger waveforms are being developed

e NSBH: Essential: long and accurate N

disruption in parameter space.

R simulations, map

o | atest (SXS): Foucart+, PRD 103, 064007 (2021)

e Spinning neutron stars emit continuous wave signal

e Once detected, a continuous wave source can be

iINformation.

- Supernovae: signal catalogs are important for training

unmodeled search methods

observed for a long term to extract ever more precise
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17 1372.800

- Solutions are smooth without matter: high order
(6-8) finite differencing or spectral methods.

e Matter: high resolution shock capturing, discontinuous
galerkin, neutrino transport, ...

- Several length & time scales:

017 1372.800

¢ individual compact objects

e orbital scale

e Wwave frequency increases ~ factor of 10

017 1372
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e causally isolate boundaries

e Need aggressive spatial and temporal mesh refinement
-> strong scaling is challenging for Berger-Oliger type algorithms

e BBH simulations ~ 10° - 109 core hours, > 10° core hours in total so far ~150 million hours UIB group,
currently 30 million/year.

e BBH: ~ 104 simulations available for 9-dimensional parameter space < 3 points/dimension
(Mmass ratio, 2 spin vectors, 2 parameters for eccentricity)



Are waveforms accurate enough?

Systematics studies are complicated and expensive ~ effort of improving waveform models

#(model parameters)
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NR can meet ET accuracy requirements for BHs, but not across entire parameter space (high spins, high mass
ratios are more challenging; wavetorm models still need more work to catch up. 8



Codes to evolve compact binaries (and more) - ;h

- Finite difference codes, based on “moving puncture paradigm”: tE
8.

e [emporal excision for black holes, FD order 4-8 5;

e Finstein Toolkit community code - various codes within the framework ‘}

* (5

* (5

e BAM (closed source)

RChombo based on Chombo AM

e BlackHoles@home (

R-Athena++ block based AM

- SXS collaboration: spatial excision of singularity inside BH

SPEC - pseudospectral methods, closed code

SPECTRE - discontinuous Galerkin multi-physics code,

open development

BOINC) based on SEN

R library
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Computing context Opportunistic

e Finstein equations are very complex: ~150 grid functions, many operations per grid point

e High memory/core needs: 2 GByte/core minimum, more is better.

e Parts of codes are typically generated by computer algebra.

e NR codes run on traditional HPC systems: European Tier-O and Tier-1 centers. So far based on CPUs.

e Simple work flows: use slurm or other queuing systems

e Job-bundling can be used to created big jobs.

e L ong evolutions: jobs can run for several weeks or months with checkpointing.
e Codes mix MPI and OpenMP parallelism.
- Spatial and temporal mesh refinement

e Hard to get strong scaling across more than a few hundred cores - but need large parameter
space maps.

e Drop temporal mesh refinement?

- Use task-based libraries for parallelisation? Charm++ (spectre code), Athena++ ... 10



* We are far away from having generic (precession+eccentricity for BHs, accurate extreme matter
treatment) waveform models calibrated to NR - need progress along several directions:

 Development: Current production codes are rooted in codes developed before 2005. Need more modern open source
community codes - requires not only human resources+community building but also computing resources.

e Development of new numerical methods and improvements of the formulation of continuum problems (gauge conditions, ...)
e Development of tools to automatising parameter space maps.

 Cover parameter space with NR simulations for waveform model development:
* Need to broaden parameter space coverage now - hard to fund e.g. at PRACE level.
 Need several hundred million core hours/year?

e Repeat later at higher accuracy with more efficient codes.
 Make NR waveforms accessible to waveform modelling community.

* Follow up, e.g. of golden events

e For highest SNR events, discovery of new phenomena: refine models in patches around estimated parameters of event to
boost accuracy.

e Requires ability to run challenging simulations very fast, with high degree of parallelisation.
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