Computing and Data requirements from data analysis

Ed Porter APC/CNRS ET-PP / EIB Workshop, Geneva, 26-27 Oct. 2023

Stefano Bagnasco, Tito Dal Canton, Frederique Marion, Benoit Mours, Viola Sordini

- GW data analysis Primer
- Computing requirements LVK O1 O3
- Open questions about computing requirements for ET
- conclusion

GW Data Analysis Primer

Compact binary coalescence (CBC)

Core collapse SN

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

GW Source Types

Cosmic Strings

Isolated NSs/Pulsars

Stochastic GW Background

Primary sources for 2G detectors

•Will also be the primary sources for 3G

Burst

CBC

GW Source Types

ET EINSTEIN TELESCOPE

- **BBHs/IMBHs**
 - populations, tests of GR and fundamental physics, cosmology
- **BNS/NSBH**
 - state, cosmology
- CCSN
 - Ist detection. Coincident EM/neutrino counterpart
- CW
 - [•] 1st detection. Ellipticity of isolated NSs, nuclear equation of state
- Stochastic background
 - proof of an astrophysical/cosmological background of GW, GW energy density
- **Cosmological phase transitions / Primordial BHs**
 - validation of theoretical predictions of early universe cosmology

populations, tests of GR and fundamental physics, EM/neutrino counterparts, nuclear equation of

Modelled

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

GW Source Types

Unmodelled

Modelled

- Uses matched filtering
- Requires a waveform model
- Requires an assumption about GR
- Requires an assumption about cosmology
- Accurate, but expensive

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

GW Source Lypes

Matched Filtering:

- GWs are analogous to 1D sound waves
- Optimal linear filter for signals buried in noise
- Also known as optimal or Wiener filtering
- Correlates a waveform model (template) with the data
- Used for CBCs, cosmic strings, stochastic background, CWs
- **Phase sensitive**

Modelled Analysis: Matched Filtering

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Data **Cleaned and Calibrated** (See Loic's talk)

Burst Search: time-frequency

ΕT

Modelled Analysis: Waveforms

Inspiral

• post-Newtonian (analytic methods - Mathematica etc.)

Merger

- NR simulations
- Very expensive
- At present, completely covered by national agencies/ERCs etc.
- ' Ringdown
 - BHPT analytic

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

• No known plan to make NR simulations an ET-funded activity at present

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Data **Cleaned and Calibrated** (See Loic's talk)

Burst Search: time-frequency

Έ

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Idea is to cover the parameter space with a regular grid of templates

• Too much overlap between templates

Computationally wasteful

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

- Too many gaps
- Reduced computational cost
- Risk of missing many sources

Έ

Position the templates such that a signal falling directly in the center of a grid segment has a minimum overlap with the closes templates

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

A GW signal will "light-up" the nearest neighbour templates

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

E

- Today's template banks cover from: •~0.5 solar masses (subsolar mass search) •a few hundred solar masses (intermediate mass BHs)
- An ET template bank would increase at the high mass range only
- Result might be x2-x5 times the cost today (more on that later)

- Uses Bayesian inference
- Two algorithms used (see John's talk for more details):
 - Markov Chain Monte Carlo (Metropolis et al 1953, Hastings 1970)
 - Nested Sampling (Skilling 2006)
- Convergence is slow
- Tens of millions of waveform generations needed
- source type.

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Runtime takes from days to months to infer parameters, depending on the

- Most expensive search
- Monochromatic emission of GWs
- Information scales with time of observation
- Computationally limited as the whole sky has to be covered in different frequency bands
- Data broken up into segments and short FFTs used.

Burst unmodelled Analysis

- Creates time-frequency maps with the data
- First BBH originally seen in TF map
- Computationally inexpensive search

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Normalized Amplitude

0

LVK Computing Requirements O1 - O3

Computing requirements 01-03 ET ELESCOPE

Pretty steady evolution from O1 to O3

No obvious correlation between number of sources and computational cost

Total computing MSU per run

"Group"	"O1 "	"O2 "	Increase
"CBC PE"	24.80	149.58	x6
"CBC non-PE"	106.32	173.56	x1.6
"CW"	175.91	40.31	x0.2
"DetChar"	5.80	5.80	xO
"Burst"	48.14	39.23	x0.8
"SGWB"	1.94	4.77	x2.5
"Other"	0.82	0.00	xO
"Total"	363.72	413.25	x1.14

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Computing requirements 01-03 ET ELESCOPE

Courtesy of S. Bagnasco

Pipeline	Number of cores (raw)	Number of M640 equivalent cores**	Running searches
gstlal	4404	5866	E.W.; main search; half SSM
PyCBC	1780	1925	E.W.; main search
SPIIR*	3896	1784	E.W.; main search
MBTA	700	645	E.W., main search; full SSM

- Misconception that template banks are a major source of computational cost
- The template banks are generated once at the beginning of each run
- Actual usage is between 10% and 50% of available cores
- Parameter space is pretty well covered

CBC Template Bank Cost

Courtesy of B. Mours

Computing requirements 01-03 ET TELESCOPE

The main changes in CBC and CW usage were due to development more than any other factor

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Courtesy of S. Bagnasco

Computing requirements 01-03 ET ELESCOPE

N.B. Production code only accounts for ~60% of total usage

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

O3

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Computing requirements 01-03 ET EINST

	Value
	227 K
	109 K
	99.1 K
	64.8 K
	54.2 K
herent	39.3 K
	28.1 K
	27.5 K
	12.3 K
ametric	11.9 K
	11.9 K
	7.29 K
	5.65 K
	4.59 K

_	bbh.pycbcoffline	1.04 K
-	directional.stochastic	645
	imbh.gstlaloffline	131
	offlinedq.idq	130
-	transient.omicron	75
-	allsky.cwboffline	53
-	sgr_qpo.stamp	21
-	testgr.tiger	7
-	directedbinary.crosscorr	2
-	sn.cwboffline	1
-	uber.gstlaloffline	1

PE for the 79 O3 detections only 214 K Main computational driver is CW search

03 estimate	03 actual	Ratio	04 estimate
487	465	95%	680
141	53	38%	85
6	22	367%	9
141	110	78%	349
ຂ	5	250%	25
777	655	84%	1148
	03 estimate 487 141 6 141 2 2	03 03 estimate actual 487 465 141 53 6 22 141 110 2 5 777 655	03 03 estimate actual Ratio 487 465 95% 141 53 38% 6 22 367% 141 110 78% 2 5 250% 777 655 84%

100 = 10.07 HErspecco Hours Updated as of Oct 28

- ... predicting for ET is doubly difficult

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Computing requirements 03 ET

• Already difficult to estimate requirements from one run to another...

Open questions about computing requirements for ET

Prediction of search costs for E'I' ET

- CBC
 - template bank size may change, but it may result in factor of 2-5 difference? conclusion : if we are still using template banks, no-one thinks computing power is an
 - issue
 - Advanced methods may be cheaper again
- Burst
 - [•] Burst search is relatively cheap, and should get cheaper as we move towards 3G
- **Stochastic**
 - same as burst
- CW
 - [•] Unless there is an algorithmic breakthrough, CW searches will continue to be the main computational cost driver

Open questions on PE/LL for ET

- N.B. This conversation has not yet happened at the OSB level
- PE today is not the main driver of computational cost. Moving towards automation, so O4 numbers may be more of a realistic indicator of cost.
- Main computational bottleneck for PE is waveform generation and/or likelihood calculation runtime
- Faster waveforms or likelihood calculations = faster PE
- For ET PE, a number of outstanding questions exist:
 - only PE for systems with NS, BBHs with large mass ratio, IMBHs?
 - for vanilla BBHs, search parameters enough for populations etc.?
 - what will the EM community require in terms of alert content?
 - any pre-alert PE will be done on partial waveforms, so sampling rate will be low

- The future of CE is unclear at present
- If we assume CE is funded, we could probably assume: • Joint development of analysis tools

 - Shared computing resources
 - Joint data sharing

 - Joint development of protocols, libraries, data bases etc. Conversation has not yet started in earnest

E. PORTER, ET-PP/EIB WORKSHOP, GENEVA 26-27 OCT. 2023

Open questions for ET

- No great explosion in computational needs between LVK O1-O3
- We have no idea of what algorithms will be used for ET...
- ...but, no-one foresees any great computational problem for ET data analysis
- There are a lot of things that need to be discussed...
- ...but it is still too early to discuss many of the topics
- The first ET-MDC will begin on November 1st 2023...
- ...we hope this will provide more concrete initial numbers!

