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Overview

• Gravitational Wave Data 

• Classical Analysis Strategies 

• Core algorithms 

• Machine Learning 

• Replacement 

• Augmentation 

• Discussion
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Gravitational Wave Data - the basics
• Strain data: Float64 @ 16384 Hz = 4TB/year per detector raw 

data 

• d(t) = h(t) = n(t) 

• Noise usually modelled as stationary gaussian process: Power 
Spectral Density 

• h(t) contains: 

• ~1 CBC / minute 

• + Pulsars 

• + Supernovae 

• + Stochastic background 

• + unknown??

Astrophysics Requires 

• Identification (“searches”) 

• Characterisation (“parameter 
estimation”) 

• Cataloguing 

• Population Analysis 

• Confronting Theory (incl. GR)
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Categories of sources

Supernovae

Spinning 
Neutron Stars

Binary Mergers

Stochastic Background

UnmodelledModelled
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Compact Binaries

• Signal to noise ratio drives detectability and 
amount of extractable information 

• ET will detect a CBC (SNR>6) every ~90s (MDC) 

• Noise limited: most sources are quiet, similar 
distribution as we have with LIGO-Virgo-KAGRA. 

• But signals are much longer! 

• 1.4-1.4  from 5Hz: 107 mins vs ~3 mins 
from 20Hz 

• Rate increases by ~3 orders of magnitude

M⊙
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Template bank 

Template

CBC Detection

• Matched filter pipelines: 
PyCBC, GSTLAL, MBTA, SPIIR 

• Exhaustive search strategy 

• Compute detection statistic for 
all templates, data, times 

• Massively parallel 

• Maximise over extrinsic params 

• Search over time with FFT

Template

Detector  
1 data

Detector  
2 data

Detector  
3 data

Detector  
1 triggers

Detector  
2 triggers

Detector  
3 triggers

Convolution

Coincidence Time-slides

Detection 
candidates Background

Template

ρ(t) = ∫
h̃*d̃

Sh( f )
e2πif(t−tc)df
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Number of templates

• Fisher Information Metric on parameter space 

• Template bank density  

• For chirp mass,  

• About 1 order of magnitude more cycles from 
low freq 5Hz vs 20 Hz

∝ det Γ

ΔMc

Mc
∝ M5/3

c ∝ (#cycles)−1
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FIG. 1. Metric density calculated by the standard LAL template bank code at each (m1,m2) point in the “low-mass” bank, transformed
to (tc,m1,m2) coordinates, and regularized as described in Section IV B by adding a small constant (equal to 0.3, in the units shown) in
quadrature. The apparent excess density of templates near m1 = m2 is necessary to avoid potential under-coverage at high ⌘.

D. Comparison with SNR ranking

The optimized statistic for a given signal population in Gaussian noise di↵ers in three respects from a ranking of events on
matched filter SNR ⇢. First, via the astrophysical rate distribution; second, via the dependence of sensitive volume on the signal
parameters; third, via the expected rate density of noise triggers. If, as would be the standard choice in Gaussian noise, we were
to rank events via ⇢ alone, our search would still be optimized for some signal population, specifically that described by

R⇢( ~MS ) =
p

det �| ~MS
· Dhor( ~MS )�3.

It may be plausible that the astrophysical coalescence rate varies as some negative power of the horizon distance, at least
within some restricted space of masses, but there is no physical reason why we would expect it to vary proportionally to the
metric density associated with the search filters, which may depend on both the detector noise PSD and the signal model used.
Furthermore, many di↵erent searches may be performed which will generally have di↵erent values of �(tc, ~M), whereas the
astrophysical population will have a fixed and constant distribution R( ~MS ).

Still, if the variation in
p

det � over the search space were negligibly small compared to variations in likelihood due to
di↵erences in ⇢, then the matched filter value might still be a good approximation to an optimal statistic. We show, though, that
this is not the case for the standard “low-mass” inspiral search space in Fig. 1, where the metric density evaluated by a standard
LIGO Algorithm Library (LAL) [37] bank placement code at 2PN order, transformed to tc,m1,m2 coordinates, is plotted for
templates with component masses between 1–24 M� and total mass 2–25 M�, for a lower frequency cuto↵ of 40 Hz and a noise
PSD representative of the “early advanced LIGO” sensitivity range given in [38]. There is a variation of several orders of
magnitude between the sparsest region and the densest near m1 = 1.5, m2 = 1. Hence, we may expect a significant di↵erence
between the ranking of events by an optimized statistic ⇤opt compared to ranking by ⇢.

IV. EXAMPLE APPLICATION: SEARCH FOR LOW-MASS NON-SPINNING BINARY COALESCENCE

In this section we will quantify the di↵erences in search e�ciency produced by using the optimized statistic described in the
previous section for a simple example of a search parameter space and possible signal distributions over it.

A. Simulated data and trigger generation

The space of “low-mass” binaries with non-spinning components of mass between 1–24 M� and total mass up to 25 M�was
the basis of a search in recent LIGO-Virgo data [32]. Using standard LAL codes we generated template banks at 2PN order

logL(d|A, ~✓) ⇡ 1

2

⇥
A2

ML(1� �ij(✓ML)�✓i�✓j)��A2 + . . .
⇤

<latexit sha1_base64="l0rXEYzTGLMGiU23w7+3bwgl/PI="></latexit><latexit sha1_base64="Z4K+IJRNPeDSOwtK0DH7LzuHlkk="></latexit><latexit sha1_base64="Z4K+IJRNPeDSOwtK0DH7LzuHlkk="></latexit><latexit sha1_base64="V9DK3MfQHWL5daQ2iTMPprgpuAE="></latexit>

�ij =
D @ĥ
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Scaled up to Einstein Telescope
• More templates from 

• More cycles in band (10x) 

• Longer templates 

• More data per filter (~100 x) 

• FFT scaling O(N log(N)) 

• More signals! 

• ~1000 x 

• Search cost ~10 x 100 log(100) ≅2000 
greater? 

• But not all of these are essential to detect 
loudest sources!

8
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Parameter Estimation

• Bayesian inference problem: quantify uncertainty on parameters  caused by 
noisy measurements (and other uncertainty e.g. calibration) 

• Posterior probability distribution function 

• Produce samples from the posterior 

• Stochastic sampling algorithms (e.g. MCMC, Nested Sampling) 

• 1000s of final independent samples desirable 

• Likelihood function also based on noise-weighted inner product

⃗θ

p( ⃗θ |d, H) =
p( ⃗θ |H)p(d | ⃗θ, H)

p(d |H)

Prior Likelihood

Evidence
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What is there to measure?
• Intrinsic Parameters 

• masses 

• spins 

• Extrinsic Parameters 

• Inclination 

• Orientation 

• Polarisation 

• Sky position 

• luminosity distance 

• time

m1

m2
L

S1

S2
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What is there to measure?
Subtler effects 

•NS Equation of state 

•tidal deformation 

•Deviations from GR 

•eccentricity

S2

m1

m2
L

S1
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Parameter Estimation - masses

7

FIG. 4. Marginalized posteriors for the binary inclination
(✓JN) and luminosity distance (DL) using a uniform-in-volume
prior (blue) and EM-constrained luminosity distance prior
(purple) [104]. The dashed and solid contours enclose the
50% and 90% credible regions respectively. Both analyses
use a low-spin prior and make use of the known location of
SSS17a. 1-D marginal distributions have been renormalized
to have equal maxima to facilitate comparison, and the ver-
tical and horizontal lines mark 90% credible intervals.

gle ✓JN = 151+15
�11 deg (low-spin) and ✓JN = 153+15

�11 deg
(high spin). This measurement is consistent for both the
high-spin and low-spin cases, since the EM measurements
constrain the source of GW170817 to higher luminosity
distances and correspondingly more face-on inclination
values. They are also consistent with the limits reported
in previous studies using afterglow measurements [108]
and combined GW and EM constraints [104, 109, 110] to
infer the inclination of the binary.

B. Masses

Owing to its low mass, most of the SNR for GW170817
comes from the inspiral phase, while the merger and
post-merger phases happen at frequencies above 1 kHz,
where LIGO and Virgo are less sensitive (Fig. 1). This
is di↵erent than the BBH systems detected so far,
e.g. GW150914 [111–114] or GW170814 [52]. The inspiral
phase evolution of a compact binary coalescence can be
written as a PN expansion, a power series in v/c, where v

is the characteristic velocity within the system [87]. The
intrinsic parameters on which the system depends enter
the expansion at di↵erent PN orders. Generally speak-
ing, parameters which enter at lower orders have a large
impact on the phase evolution, and are thus easier to
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FIG. 5. 90% credible regions for component masses using
the four waveform models for the high-spin prior (top) and
low-spin prior (bottom). The true thickness of the contour,
determined by the uncertainty in the chirp mass, is too small
to show. The points mark the edge of the 90% credible re-
gions. 1-D marginal distributions have been renormalized to
have equal maxima, and the vertical and horizontal lines give
the 90% upper and lower limits on m1 and m2, respectively.

measure using the inspiral portion of the signal.

The chirp mass M enters the phase evolution at the
lowest order, thus we expect it to be the best-constrained
among the source parameters [32, 80, 92, 93]. The mass
ratio q, and consequently the component masses, are in-
stead harder to measure due to two main factors: 1)

and spins, can be measured is determined by the network
SNR. For GW170814 this is dominated by the two LIGO
detectors. The inclusion of Virgo data into the coherent

analysis significantly improves the inference of parameters
describing the binary’s position relative to the Earth, as
shown in Fig. 3, since those parameters are predominantly
determined by the relative amplitudes and arrival times
observed in the detector network [67,146,147]. Because of
the inferred orientation of the binary, we do not see a
significant improvement in parameters such as inclination
and polarization angle for GW170814.

VI. TESTS OF GENERAL RELATIVITY

To determine the consistency of the signal with GR, we
allowed the post-Newtonian (PN) and additional coeffi-
cients describing the waveform to deviate from their
nominal values [148–150], as was done for previous
detections [2–5,10]. In addition to previously tested coef-
ficients, these analyses were expanded to also explicitly
consider phase contributions at effective −1PN order, i.e.,
with a frequency dependence of f−7=3. Additionally, as in
[2–4], we check that the inspiral and merger-ringdown
regimes are mutually consistent, and check for possible
deviations from GR in the propagation of GWs due to a
massive graviton and/or Lorentz invariance violation.
Preliminary results of all these tests show no evidence
for disagreement with the predictions of GR; detailed
investigations are still ongoing, and full results will be
presented at a later date.

VII. GRAVITATIONAL-WAVE POLARIZATIONS

One of the key predictions of GR is that metric
perturbations possess two tensor degrees of freedom
[151,152]. These two are only a subset of the six inde-
pendent modes allowed by generic metric theories of
gravity, which may in principle predict any combination
of tensor (spin-2), vector (spin-1), or scalar (spin-0) polar-
izations [11,12]. While it may be that any generic theory of
gravity will be composed of a potential mixture of
polarization modes, an investigation of this type is beyond
the scope of this Letter. However, a simplified first
investigation that serves to illustrate the potential power
of this new phenomenological test of gravity is to consider
models where the polarization states are pure tensor, pure
vector, or pure scalar only.
So far, some evidence that GWs are described by the

tensor (spin-2) metric perturbations of GR has been
obtained from measurements of the rate of orbital decay
of binary pulsars, in the context of specific beyond-GR
theories (see, e.g., [153,154] or [155,156] for reviews), and
from the rapidly changing GW phase of BBH mergers
observed by LIGO, in the framework of parametrized
models [2,4,10]. The addition of Advanced Virgo provides
us with another, more compelling, way of probing the
nature of polarizations by studying GW geometry directly
through the projection of the metric perturbation onto our
detector network [157–159].

FIG. 4. Posterior probability density for the source-frame masses
m1 andm2 (top) and the effective inspiral and precession spin para-
meters, χeff and χp (bottom) measured at a gravitational-wave freq-
uency of 20 Hz, well before the merger. The dashed lines mark the
90% credible interval for the one-dimensional marginalized dis-
tributions. The two-dimensional plots show the contours of the 50%
and 90% credible regions plotted over a color-coded posterior den-
sity function. For GW170814, both χeff and χp are influenced by
their respective prior distributions, shown in green. While the GW
observation provides additional constraints for the χeff posterior,
there is only a marginal information gain for χp. (Kullback–Leibler
divergence between the prior and posterior distribution of 0.08 nat
[4,129,130].)
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BBH

BNS

GWs are circularly polarized, whereas for a binary observed
edge-on (cos ι ¼ 0), GWs are linearly polarized.
During the inspiral, the phase evolutionϕGWðt;m1;2; S1;2Þ

can be computed using post-Newtonian (PN) theory, which
is a perturbative expansion in powers of the orbital velocity
v=c [27]. For GW150914, v=c is in the range ≈0.2–0.5 in
the LIGO sensitivity band. At the leading order, the phase
evolution is driven by a particular combination of the two
masses, commonly called the chirp mass [28],

M ¼ ðm1m2Þ3=5

M1=5 ≃ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

; ð3Þ

where f is the GW frequency, _f is its time derivative, and
M ¼ m1 þm2 is the total mass. Additional parameters
enter at each of the following PN orders. First, the mass
ratio, q ¼ m2=m1 ≤ 1, and the BH spin components
parallel to the orbital angular momentum vector L affect
the phase evolution. The full degrees of freedom of the
spins enter at higher orders. Thus, from the inspiral, we
expect to measure the chirp mass with highest accuracy and
only place weak constraints on the mass ratio and (the
components parallel to L of) the spins of the BHs [21,29].
Spins are responsible for an additional characteristic

effect: if misaligned with respect to L, they cause the
binary’s orbital plane to precess around the almost-constant
direction of the total angular momentum of the binary,
J ¼ Lþ S1 þ S2. This leaves characteristic amplitude and
phase modulations in the observed strain [30,31], as ψ and ι
become time dependent. The size of these modulations
depends crucially on the viewing angle of the source.
As the BHs get closer to each other and their velocities

increase, the accuracy of the PN expansion degrades, and
eventually the full solution of Einstein’s equations is
needed to accurately describe the binary evolution. This
is accomplished using numerical relativity (NR) which,
after the initial breakthrough [32–34], has been improved
continuously to achieve the sophistication of modeling
needed for our purposes. The details of the ringdown are
primarily governed by the mass and spin of the final BH. In
particular, the final mass and spin determine the (constant)
frequency and decay time of the BH’s ringdown to its
final state [35]. The late stage of the coalescence allows
us to measure the total mass which, combined with the
measurement of the chirp mass and mass ratio from the
early inspiral, yields estimates of the individual component
masses for the binary.
The observed frequency of the signal is redshifted by a

factor of ð1þ zÞ, where z is the cosmological redshift.
There is no intrinsic mass or length scale in vacuum general
relativity, and the dimensionless quantity that incorporates
frequency is fGm=c3. Consequently, a redshifting of
frequency is indistinguishable from a rescaling of the
masses by the same factor [20,36,37]. We therefore
measure redshifted masses m, which are related to source

frame masses by m ¼ ð1þ zÞmsource. However, the GW
amplitude AGW, Eq. (2), also scales linearly with the mass
and is inversely proportional to the comoving distance in
an expanding universe. Therefore, the amplitude scales
inversely with the luminosity distance, AGW ∝ 1=DL, and
from the GW signal alone we can directly measure the
luminosity distance, but not the redshift.
The observed time delay, and the need for the registered

signal at the two sites to be consistent in amplitude and
phase, allow us to localize the source to a ring on the sky
[38,39]. Where there is no precession, changing the
viewing angle of the system simply changes the observed
waveform by an overall amplitude and phase. Furthermore,
the two polarizations are the same up to overall amplitude
and phase. Thus, for systems with minimal precession, the
distance, binary orientation, phase at coalescence, and sky
location of the source change the overall amplitude and
phase of the source in each detector, but they do not change
the signal morphology. Phase and amplitude consistency
allow us to untangle some of the geometry of the source. If
the binary is precessing, the GWamplitude and phase have
a complicated dependency on the orientation of the binary,
which provides additional information.
Our ability to characterize GW150914 as the signature of

a binary system of compact objects, as we have outlined
above, is dependent on the finite signal-to-noise ratio
(SNR) of the signal and the specific properties of the
underlying source. These properties described in detail
below, and the inferred parameters for GW150914 are
summarized in Table I and Figs. 1–6.

II. METHOD

Full information about the properties of the source is
provided by the probability density function (PDF) pð~ϑj~dÞ
of the unknown parameters ~ϑ, given the two data streams
from the instruments ~d.
The posterior PDF is computed through a straightfor-

ward application of Bayes’ theorem [40,41]. It is propor-
tional to the product of the likelihood of the data given the
parameters Lð~dj~ϑÞ, and the prior PDF on the parameters
pð~ϑÞ before we consider the data. From the (marginalized)
posterior PDF, shown in Figs. 1–4 for selected parameters,
we then construct credible intervals for the parameters,
reported in Table I.
In addition, we can compute the evidence Z for the

model under consideration. The evidence (also known as
marginal likelihood) is the average of the likelihood under
the prior on the unknown parameters for a specific model
choice.
The computation of marginalized PDFs and the

model evidence require the evaluation of multidimensional
integrals. This is addressed by using a suite of Bayesian
parameter-estimation and model-selection algorithms tail-
ored to this problem [42]. We verify the results by using

PRL 116, 241102 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

241102-3

(M ¼ 13.9þ5.1
−1.0 M⊙) and likely also has the least massive

object over 3 M⊙ (85% probability and m2 ¼ 5.0þ1.4
−1.9 M⊙).

For most sources detected in O3a, the mass ratio
posteriors have support at unity and, therefore, are con-
sistent with equal mass mergers. An exception is the source
of GW190412, which is the first event detected that has a
confidently unequal mass ratio (q ¼ 0.28þ0.12

−0.06) and exhibits
strong signs of HM contributions to the waveform [236].
Although its mass ratio is confidently bounded away from
unity, GW190412 has only a 34% chance of having the
smallest mass ratio among O3a sources with m2 > 3 M⊙.

As seen in Figs. 6 and 8, the mass ratios are not well
constrained for many systems, so one or more could have a
smaller mass ratio than GW190412.

B. Sources with m2 < 3 M⊙

1. GW190425

The least massive O3a system is associated with
GW190425 and is likely a binary neutron star system
given the inferred masses (m1 ¼ 2.0þ0.6

−0.3 M⊙ and m2 ¼
1.4þ0.3

−0.3 M⊙), but constraints on the tidal parameters do

FIG. 6. Credible region contours for all candidate events in the plane of total mass M and mass ratio q. Each contour represents the
90% credible region for a different event. We highlight the previously published candidate events: GW190412, GW190425,
GW190521, and GW190814, the potential NSBH GW190426_152155, and, finally, GW190924_021846, which is most probably the
least massive system with both masses > 3 M⊙. The dashed lines delineate regions where the primary or secondary can have a mass
below 3 M⊙. For the region above the m2 ¼ 3 M⊙ line, both objects in the binary have masses above 3 M⊙.

FIG. 7. Credible region contours for all candidate events in the plane of chirp mass M and effective inspiral spin χeff . Each contour
represents the 90% credible region for a different event. We highlight the previously published candidate events (cf. Fig. 6), as well as
GW190517_055101 and GW190514_065416, which have the highest probabilities of having the largest and smallest χeff , respectively.

R. ABBOTT et al. PHYS. REV. X 11, 021053 (2021)

021053-20
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Computational Cost

• For O3 LVK PE analyses, used tens of millions of cpu-hours for “production runs” (doesn’t 
include development + simulations ) 

• 3 pipelines used: 

• LALInference, Bilby+dynesty: stochastic sampling 

• RIFT: Hybrid Grid+Monte Carlo 

• Similar amounts again used for testing GR! 

• Mostly uses the same type of stochastic samplers, with more complex models 

• This was actually slightly less than in O2!
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Computational Scaling

• How do computational costs scale in practice? 

• Identify bottlenecks 

• Increase parallelism 

• Reduce inefficiencies 

• Use example of nested sampling to break down the details, since this is my 
speciality.

14



Nested Sampling

Adapted from Skilling 2006

Nested sampling

Draw initial ensemble

Remove worst point

Draw new point with 
L > Lth

Check if finished?

Resample posterior

N

Y

Initial live 
points

Used for 
the final 
evidence 
estimate
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Nested sampling

Draw initial ensemble

Remove worst point

Draw new point with 
L > Lth

Check if finished?

Resample posterior

N

Y
Total cost: 
O(H Nlive) 

H = information 
Nlive = # live points

×

16



Nested sampling

Draw initial ensemble

Remove worst point

Draw new point with 
L > Lth

Check if finished?

Resample posterior

N

Y

Proposal for new points

draw from proposal

check L > Lth

Nstep > ACL ?

N
N

Y

done
Y

Total cost: 
O(H Nlive) O(ACL ) 

H = information 
Nlive = # live points 

ACL = autocorrelation  
length of proposal 

=proposal efficiency

× × × ϵ

ϵ
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Nested sampling

Draw initial ensemble

Remove worst point

Draw new point with 
L > Lth

Check if finished?

Resample posterior

N

Y

Proposal for new points

draw from proposal

check L > Lth

Nstep > ACL ?

N
N

Y

done
Y

Likelihood

x Ndetectors

Compute 
waveform

FFT 
(if required)

Detector response 
h = h+F+ + hxFx

time shift to 
detector site

Compute 
<d-h|d-h>

Total cost: 
O(H Nlive) O(ACL ) O(T fs Ndet) 

H = information 
Nlive = # live points 

ACL = autocorrelation  
length of proposal 

=proposal efficiency 
T = segment length 
fs = sampling rate 
Ndet = # detectors

× × × ϵ × × ×

ϵ
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Likelihood

x Ndetectors

Compute 
waveform

FFT 
(if required)

Detector response 
h = h+F+ + hxFx

time shift to 
detector site

Compute 
<d-h|d-h>

Waveform cost

BBH
fs=4096 Hz 
fmin = 20 Hz 

T = 4 s 
m1 = 36  
m2 = 30 

M⊙
M⊙

BNS BBH
IMRPhenomPv2 433 ms 1 ms

IMRPhenomXPHM 578 ms 4 ms
SEOBNRv4PHM ?? 5050 ms

SEOBNRv4_ROM 1.5 ms
rest of likelihood function 15 ms <0.1 ms

BNS
fs=4096 Hz 
fmin = 20 Hz 
T = 196 s 

m1 = 1.4  
m2 = 1.4 

M⊙
M⊙

(non-spinning, averaged over extrinsic params) 
computed on 4.2GHz i7-7700K

Typical PE run used ~107 waveforms 
with O3 nested sampler
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Waveform and Likelihood Acceleration
• Multi-band waveforms [Vinciguerra+  arXiv:1703.02062, 

Morisaki arXiv:2104.07813] 

• ~ 50x speed up for BNS but no precomputation

• Reduced Order Quadrature [Canizares+ 1404.6284, 
Smith+1604.08253, Qi+   2009.13812] 

• Replace inner product in freq domain with reduced basis 

• 10000x speed up! 

• Requires pre-computation of projection coefficients - 
narrow mass range or very large datasets

• Heterodyned likelihood (a.k.a Relative binning) 
[Cornish arXiv:1007.4820,  arXiv:2109.02728, 
Zackay+  arXiv:1806.08792, 
Finstad+ arXiv:2009.13759] 

• Use difference between a reference waveform and 
proposed waveform to compute likelihood. 
Bandwidth of difference << full bandwidth of signal 

• Similar speed-up to ROQ for freq-domain 
waveforms but no pre-computation. Very powerful 
for BNS 

• Not (as) applicable to time-domain PDE based 
waveforms

• Reduced Order Models (e.g. Puerrer arXiv:1512.02248, Cotesta+ 
arXiv:2003.12079) 

• Decompose waveform (A(f), φ(f)) into basis functions. Interpolate 
weights across q,  

• Bypasses time-domain PDEs (good for SEOB) and/or NR [Blackman+ 
arXiv:1701.00550]) 

• Can make use of GPUs / ML methods for interpolation [e.g. Khan+ 
arXiv:2008.12932 , Barsotti+ arXiv:2110.08901] 

• >1000x speed up for very slow waveforms

⃗χ
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Nested sampling

Draw initial ensemble

Remove worst point

Draw new point with 
L > Lth

Check if finished?

Resample posterior

N

Y

Proposal for new points

draw from proposal

check L > Lth

Nstep > ACL ?

N
N

Y

done
Y

Likelihood

x Ndetectors

Compute 
waveform

FFT 
(if required)

Detector response 
h = h+F+ + hxFx

time shift to 
detector site

Compute 
<d-h|d-h>

Total cost: 
O(H Nlive) O(ACL ) O(T fs Ndet) 

H = information 
Nlive = # live points 

ACL = autocorrelation  
length of proposal 

=proposal efficiency 
T = segment length 
fs = sampling rate 
Ndet = # detectors

× × × ϵ × × ×

ϵ
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Bounding distributions

E.g. MultiNest, Dynesty,  Nestle

Random walk

E.g. LALInferenceNest, CPNest, Dynesty, 
Nestle

Slice sampling

E.g. PolyChord, Dynesty

Proposal for new points

draw from proposal

check L > Lth

Nstep > ACL ?

N

NY

done
Y

Total cost: 
O(H Nlive) O(ACL ) O(T fs Ndet) 

H = information 
Nlive = # live points 

ACL = autocorrelation  
length of proposal 

=proposal efficiency 
T = segment length 
fs = sampling rate 
Ndet = # detectors

× × × ϵ × × ×

ϵ

flexible 
auto-tune for efficiency 

long ACLs (5000 for CBC)

auto-tuning 
long ACLs 

multiple modes

zero ACL 
poor efficiency in high 

dimensions
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Example: Nested sampling with AI

Train a machine learning algorithm to learn iso-likelihood contours during nested sampling and then sample 
directly from those contours to produce new samples according to the prior.
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Normalising flows

• They learn an invertible mapping (f ) from a complex distribution in 
the physical space X to a simple distribution in the latent space Z 

• The mapping has a tractable Jacobian so we can compute the 
probability of a sample in the physical space: 

• There are different types, we choose to use a version based on 
affine coupling transforms

Normalising Flow

24



For details, see 
arXiv:1605.08803 
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Acceleration (LVC O3 network)

~3x faster than O3b Bilby+dynesty
26



ET example BBH analysis

• Analysed MDC1 loudest BBH signal with Bilby+nessai 8-
core [results page] 

• 63s duration from 5Hz, standard likelihood used 

• SNR 588, 50 nats information 

• Run took 9 days 17.5 hours (actually better than 
expected!) 

• Algorithm slightly over-constrained signal (needs tuning) 

•
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Population - level analyses

• Hierarchical inference problems, posed as bayesian networks 

• Ingredients: 

• Selection function (estimated from injections) 

• Posterior samples from events 

• Astrophysical / population model (can be slow) 

• May include multi-messenger data 

• Stochastic sampling methods used here too

5

context of Bayesian data analysis, the statistic used to
compare two models is the posterior odds defined:

O12 =
p(M1|D)

p(M2|D)
=

p(M1)

p(M2)

p(D|M1)

p(D|M2)
. (26)

Normally we are interested in cases where the a priori
probability of either model being correct is comparable,
and therefore the posterior odds is dominated by the
Bayes factor :

B12 =
p(D|M1)

p(D|M2)
, (27)

which quantifies the contribution to the posterior odds
given by the data D. A value of lnB12 > 0 favours M1,
while lnB12 < 0 favours M2.
The analysis is performed by applying the model de-

scribed in Section 2 with an assumed jet structure from
Section 2.4 given both GW and sGRB prompt emission
data.
Table 1 lists the notation used in the following section.

The data can be split into that produced by a GW-
triggered event, denoted with the subscript ‘GW’, and
that produced from an EM trigger, denoted with the
subscript ‘EM’.
The data from the NGW GW-triggered events consists

of the GW strain xGW and the flux of the counterpart
FGW. The GW-triggered events may not necessarily
require a counterpart to be considered for the analysis.
If the sky localisation of the source coincides with the
sky coverage of gamma-ray burst detectors then we can
assume that it was not detected due to its distance and
orientation to us. The current events that meet this
criteria are both GW170817 with GRB 170817A as well
as GW190425 and the non-detection of its counterpart,
under the assumption that a sGRB was produced, given
the Fermi detector covered 50% of the sky localisation
and Konus–Wind covered the entire sky (Hosseinzadeh
et al. 2019).
The EM-triggered events are simply the number of

sGRB detections that Swift made within a 10 year op-
erational period NEM.
The likelihood can be decoupled into two terms, one

of which considers GW-triggered events and the other
EM-triggered:

L = LEMLGW. (28)

The likelihood of the EM-triggered events is a Poisson
distribution with a mean given in Eqn. 2:

LEM =
N̂EM(⇥, RBNS,⌃)NEMe

�N̂EM(⇥,RBNS,⌃)

NEM!
. (29)

The mean is evaluated over a regular grid of shape
(z, (2✓/⇡)1/3, log10 L0) = (⇥50,⇥100,⇥1000).The an-
gular grid points were chosen to be distributed over a

Variable Description

xGW GW detector data

FGW sGRB detector data

NGW Number of detected GWs

NEM Number of detected sGRBs

⌃ Luminosity function hyperparameters

RBNS BNS merger rate

⇥ Jet structure parameters

� {✓v, dL}
L0 Intrinsic on-axis luminosity

Table 1. Shorthand notation of the GW and EM data as
well as sets of parameters of interest.

Data set Data

D170817 {x170817, F170817}
D190425 {x190425, F190425}
DR {NEM, NGW}

D170817+R {D170817,DR}
Dall {D170817,D190425,DR}

Table 2. Summary of the data used in the analysis.

FGW xGW

�

⇥

NGWNEM

RBNS

L0

⌃

8 i 2 NGW

Figure 1. High-level Bayesian network of the model de-
scribed in Section 2. The variable names are defined in Ta-
ble 1.

power-law so as to populate low ✓ areas of the param-
eter space with grid points, while also maintaining a
relatively high density of points at wider angles where
emission from some jet structures is still significant.
The GW-triggered events likelihood is the product of

each of the NGW events:

LGW /

NGWY

i=1

SX

j=1

p(Fi,GW|⇥,�i,j , Lj,0), (30)

A DAG describing a multi messenger population 
analysis of sGRBs and BNSes 
Hayes+ 2023
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Novel methods

• Explosion in Machine Learning methods in last 5 years 

• CNNs, RNNs, CVAEs, GANs, Normalising flows, diffusion models, … 

• Many off-the-shelf techniques work for images or text, but GW applications usually require some 
customisation 

• Enabled by and enables GPU computing as a general tool 

• Tensorflow, PyTorch, JAX main toolkits used in GWs so far 

• Python-driven with CUDA/C/Fortran backend 

• Can offers speedups of 1000x for certain problems 

• Other problems can be re-cast into GPU-friendly forms
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ML-Enhanced Analyses

• Emulation via neural network or similar 

• Waveforms [e.g. Thomas+2022] 

• Selection function [e.g. Gerosa+2020] 

• Background estimation for searches [Baker+ 
2015, Kim+2015, Kapadia+2017, Kim+2020] 

• ML to improve stochastic samplers 

• e.g. Nessai for nested sampling [Williams+ 2021]  

• MCMC w/ normalising flows [Ashton+ 2021, 
Wong+ 2023] 

• Variational Inference

• ML on output of searches 

• Random forest, simple NNs  

• GPUification of core algorithms 

• ✅ FFTs for CBC, CW searches 

• Waveform generation with CUDA (not 
all waveforms are amenable) 

• GPU-based probability toolkits (e.g. 
tensorflow probability, Pyro) can 
accelerate population inference
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ML-native analyses

• Deep learning classifiers for detection 

• DNNs/CNNs Gabbard+2018, George+2018, Huerta+2021, Schäfer+2022 

• Still mostly limited to short duration signals and high false alarm rates 

• Bayesian Inference algorithms 

• Likelihood-free inference (e.g. Vitamin [Gabbard+2022], DINGO [Dax+2021]) 

• (Conditional, continuous) normalising flows shown to work for overlapping signals 

• Training takes days - weeks, inference seconds or less! 

• None of these have been shown to work for long signals (>8s?). Frontier needs pushed back for 3G analysis. 

• What is the actual limitation? SNR per sample? Dimensionality?
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CBC Landscape
• Current algorithms can easily detect ET signals (see previous MDCs). 

• 3G sensitivity motivates expanded searches: spin precession, tides, eccentricity. These are the most interesting systems 

• Template banks explode with additional dimensionality and longer signals 

• Optimally detecting signals requires very long filters, accounting for Earth rotation. IMO exhaustive search probably not the 
way forward. 

• ML methods more efficient, but not as sensitive (yet). Useless at long signals. 

• Matched filter compresses the SNR into a small number of d.o.f - use as convolutional input? 

• Parameter estimation: 

• Techniques exist for long signals with sampling algorithm but haven’t yet been tested on 3G data fully 

• Models need to be expanded to include additional physics 

• ML methods look very promising on several fronts, but none fully ready yet
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Discussion

• Computing model: HTC model used so far, will it continue? Move to cloud? 

• Custom hardware e.g. FPGA? Not much uptake for current analyses. 

• Pinning down numbers - MDC to gather stats 

• Astrophysics interface - what are the highest priorities, if we can’t do everything? 

• Numerical Relativity - requirements for better accuracy require vastly expensive 
simulations 

• Looking even further ahead - new tech, e.g. quantum computing?
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