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Overview

* Motivation: limitations of Earthquake Early Warning Systems

* Theory of transient gravity perturbations induced by earthquakes

* Observation of elasto-gravity signals generated by large earthquakes
* Tsunami warning based on elasto-gravity signals

* Instrumentation needs for earthquake warning with gravity signals



Earthquake Early Warning Systems

https://earthquake.usgs.gov/research/earlywarning



Off-shore earthquakes, inland sensors

time from rupture onset = 13 s SAFETY NET 1442-i3-0-jpg-7.3177
To detect tsunamis, Japan plans
to deploy 154 observing posts ).
linked by sea-floor cables by
2016. This year, it will install
three buoys that will relay
information from deep-sea
tsunami sensors.
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Earthquakes shift rock masses

Fault offsets and static deformation Wave mediated transient deformation
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” Fault scarp

Wave fronts

ttps:/temblor.net/

Density perturbations carried by P waves
+ deformation of material interfaces (e.g. free surface)


https://temblor.net/

Dynamic gravity changes induced by earthquakes:
theory (Harms et al, 2015)

A quadrupole gravity field Gravity potential before the arrival of P waves:

* Y(r,t) = ——R p(6,¢) 1,[Mo](t)
Distance/Pwave Double time-integral of

decay radiation pattern seismic moment




Spectrum of terrestrial gravity accelerations
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Discovery of prompt elasto-gravity signals (PEGS)
of the 2011 Japan earthquake recorded by seismometers

Vallée et al. (Science, 2017)
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Global observation of prompt elasto-gravity signals (PEGS)

Mw7.9 Gulf of
Alaska (2018)
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Sensors
100 km apart
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Licciardi et al., Nature, 2022
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Synthetic database of PEGS
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Image recognition
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PEGS recognition

PEGS from a magnitude 8 earthquake
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PEGSnet architecture (Convolutional Neural Network)
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Performance on the Tohoku-Oki earthquake (Magnitude 9)
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General performance in Japan: Works for Magnitude > 8.3

Accuracy
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Licciardi, Bletery et al., Nature, 2022
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Performance in Chile: Works for Magnitude > 8.7
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Performance on the Maule earthquake (Magnitude 8.8)
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Performance in Alaska: Works for Magnitude > 7.8

Seismic network
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Performance on 3 Magnitude > 7.8 earthquakes
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Implementation in the early warning system of Peru

Lima

Seismic network
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Seismometer
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The Gravitational Wave Spectrum

Quantum fluctuations in early universe

r )
\ 4

Binary Supermassive Black
Holes in galactic nuclei

m <
Q _
&) Compact Binaries in our
S ) Galaxy & beyond X
O < »
) Compact objects
captured by Rotating NS,
Supermassive Black Supernovae
Holes ” -
wave period age of X :
P eI years hours
‘ | -
I
log(frequency) -16  -14 - -8
—p —> <+ > <4 —
N Cosmic microwave Pulsar Timing Space Terrestrial
’6 background Interferometers interferometers
+— polarization
O
Q
)
Q
()]

NASA Goddard Space Flight Center



Dynamic gravity changes induced by
earthquakes: theory

A quadrupole gravity field Gravity strain:

h(r,t) = —S(e ¢) I,[M](t) ~ 1/f7

Y

Distance angular Fourth time-integral of

pattern seismic moment



Strain
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https://arxiv.org/abs/1610.08479

Low-frequency GW detector concepts

Devices designed to measure
z gravitational waves, minute
Tidal forces by distortions of space-time that
gravitational waves . . -
are predicted by Einstein's

theory of general relativity

Laser-atom interferometers
Torsion-bar antennas (TOBA)

abry-Perot
interferometer

TOBA concept (torsion-bar antenna)
Ando et al (2010)
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Superconducting gravity gradiometer

Ho-Jung Paik’s SOGRO concept
(Moody et al 2002; Paik et al 2016)
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Sensitivity of o
next-generation gravity — medd2 okt — 56G

strain meters
Juhel et al (2018)
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Earthquake detection SNR

Juhel et al (2018)
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Strain (x 1071%)  Strain (x 10714)

Strain (x 10714)

Simulation of the M9.1 2011 Tohoku, Japan earthquake
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Magnitude

Performance of magnitude estimation
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Conclusions

e Earthquakes generate gravity perturbations before the arrival of seismic waves

* Gravity signals generated by very large earthquakes can be recorded
after 1 min by seismometers = contribution to tsunami warning

* The gravity signals of moderate earthquakes at short times (~10 s), are tiny but
within reach of next-generation gravity-gradient sensors

* Advantage for EEWS: improved warning times, reduced blind zone

- Earthquake warning sooner and for all

* Need new gravity-gradient instruments with sensitivity
in gravity strain of 1071° /v/Hz at 0.1 Hz






