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. Research Infrastructures and Instrumentation

Vesztergombi High Energy Physics Laboratory (VLAB)
of HUN-REN Wigner RCP
— Application oriented R&D of gaseous tracking detectors

International Virtual Muography Institute (VMI)
— framework for data storage, monitoring and simulation
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Muographic Observation Instrument (MOI)

D. Varga et al. Advances in High Energy Physics, 2016, 1962317
https://doi.org/10.1155/2016/1962317
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Custom-designed electronics ]

* Modular infrastructure
for volcano muography
(11 MWPC-based trackers

coverl0 sqm surface area)

Micro-computer controlled
- real-time DAQ & analysis
Power consumption:

~ 6 W per MMOS Oléh AHEAD WS 2024
Muograpic Observation Instrument W0O2017187308

o L D. Varga et al. Nucl. Instrum. Meth. A 958, 162236, 2020
https://patentscope2.wipo.int/search/en/detail.jsf?docld=W02017187308 htps://doi.org/10.1016/j.nima.2019.05.077

L. Olah et al. Scientific Reports, 8, 3207, 2018,
https://doi.org/10.1038/s41598-018-21423-9
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I1. Volcanological Studies
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Muography of Sakurajima volcano

An active stratovolcano on the "Ring of fire" within the Aira caldera in Kagoshima Bay
Latest plinian eruption occurred in 1914 — Next plinian eruption is expected in 25 years https://doi.org/10.1038/srep32691

Two craters of the southern peak (the connected Vents A and B, as well as Showa crater) erupted consecutively in the recent years
— A few hundreds of (explosive) short-term eruptions per year

Short-term eruptions eject aerosols and gas with a bulk volume of below 107 m3 to a height of 1000—-5000 meter above the crater rims,
throwing fragments of volcanic plug and lava bombs usually within approx. 3000 m radius
— Sakurajima pose continuously hazard to the surrounding areas

MEXT launched Integrated Program for Next Generation Volcano Research and Human Resource Development
https://kazan-pj.bosai.go.jp/next-generation-volcano-pj-2019-jun

The University of Tokyo and Wigner RCP conduct muography of Sakurajima volcano since January 2017
A & 7 . PR e
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Source: Kimon Berlin, CC BY-SA 2.0

* Source: Wikipedia

Source: https://doi.org/10.1038/s41598-018-21423-9
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The First Observations:

Plug Formation, Tephra Deposit

Resolving the internal structure of the
volcano with a spatial resolution of
below 10 metres that is challenging
to other techniques

L. Olah et al. Scientific Reports, 8, 3207, 2018,
https://doi.org/10.1038/s41598-018-21423-9

Monitoring changes in the amount of
materials on the volcanic edifice due to
volcanic ejecta deposition, erosion and
mudflows (lahars)

L. Olah et al. Scientific Reports 11, 17729, 2021,
https://doi.org/10.1038/s41598-021-96947-8

Imaging of a magmatic plug beneath

Showa crater with the cease of eruptions

L. Olah et al. Geophys. Res. Lett. 46, 10417, 2019,
https://doi.org/10.1029/2019GL084784
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Link between ground deformation and eruptions

Active volcanism is driven by the subsurface evolution and
movement of magmatic materials, which may induce
seismicity, ground deformation, gas emission, and
fumarolic activity

Monitoring of the signals induced by these phenomena is
indirect and interpretation of the origin of the signals is
challenging because a wide variety of factors influence the
behaviour of magma and host rock in the run-up towards
eruption

198 volcanoes with a full 18-year observation history showed
that 46 % of deformed volcanoes erupted

Understanding the causal physical mechanism by which
ground deformation and volcanic activity are linked is
required for robust forecasting

Aim: Revealing the causal physical
mechanism of ground
deformations (changing in the
state of magma) via density

J. Biggs et al. Global link between deformation and volcanic eruption quantified by
satellite imagery. Nat Commun 5, 3471 (2014).https://doi.org/10.1038/ncomms4471
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https://doi.org/10.1038/ncomms4471

Muography and InSAR Observations of Sakurajima

Muographic images were captured for the crater region with 9 x 5 angular bins for time sequences of 5 months

between November 2018 and March 2021.
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Vertical displacement around the active crater of Sakurajlma was determined relative to the ground level measured
on 31 October 2018 at ten locations (yellow-coloured crosses) by NEC using the Phased Array type C- band Synthetlc
Aperture Radar images acquired by Sentinel-1 with a periodic time of 12 days.
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Volcanological Implications

Mass density increased during inflation, when eruption frequency was low, and decreased
during deflation, when eruption frequency was high.

Periods of low eruption frequency are associated with the formation of a dense plug in the
conduit, which we infer caused inflation of the edifice by trapping pressurized magmatic gas.

Muography reveals the in-conduit physical mechanism for the observed correlation.
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L. Olah, et al. (2023) Geophys. Res. Lett. 50, €2022GL101170 https://doi.org/10.1029/2022GL101170
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Density beneath Showa Crater (gcm—3)
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Density beneath Minamidake Crater (gcm™3)

An anti-correlation was found between the densities beneath
Minamidake and Showa craters: The Pearson’s coefficient was
quantified to -0.52 for these mass density values.

Infrasonic monitoring data showed a similar anti-correlation
between the regions beneath the adjacent craters of Mount Etna.
Marchetti et al (2009) observed the switching of infrasonic source
locations (that correlated with gas pressure) and change of activity
between the and Bocca Nouva and the South East Crater (SEC). A
branched conduit structure was inferred.

Inverse correlation between mass densities observed for the entire
period, suggesting that magma degassing occurs either in
Minamidake crater and in Showa crater, acting as a similar
preferential pathway to the one observed in Etna

— a branched connection between the conduits of the two
active craters

Olah AHEAD WS 2024 11



I11. Studying Oceanic Lithosphere
via Muography of Ophiolites

Olah AHEAD WS 2024
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Oceanic litosphere in Ophiolites

Oceanic litosphere (crust and upper solid mantle) cycle (1. formation, 2. evolution and 3. desctruction)
- cycle of matter and energy

Only one vertical seismic profile reached seismic layer 2/3 boundary and
Moho has not yet been reached by oceanic drilling — geological nature is not yet well understood

Different seismic layers (layer 2/3 boundary and Moho) are exposed above ground in ophiolites

- Ophiolites help to understand the correlation between oceanic structure and geology
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DOI:10.1029/2008GC002188 Olah AHEAD WS 2024 13



Muography of the Samail Ophiolite

(a)

Sampling is available but sampling density is low
— seismic velocities are different

Objective: better understand the geologic
nature of the crust/mantle (Moho) and
upper/lower crustal boundaries of the Oman (b)
Ophiolites

Muographic images of the bulk density structure
can be compared to the
seismic data of the ocean floor

The Oman ophiolite is the largest and best
preserved fragment of oceanic lithosphere in the
world, extending 80 km x 500 km

Oman ophiolites oceanic crustal structure is
similar to the structure of East Pacific Rise

— data can be compared with the structure of the
Pacific Plate, the target of the
|IODP-805 MoHole to Mantle (M2M) Proposal

Olah AHEAD WS 2024

Muon detectorw_kon
on the Moho _—7...-;

L

c:,n:ﬁ‘E Mohn©
. Maﬂﬂe

Olistostrome and melange
[ ]extrusive rocks (v1, v2, v3)
|:|w Sheeted dike complex

q;,"‘ﬁa@m‘ \

hern E“ g
unuﬂnt'-
““l.: iu‘*'-h. K*w

observation

stations \*0'5** i

/ Segment center
Other obser ‘ ;-"N

-vation site \

W. Sadam T
uuluunl
unmhulSGut ern en

;xh \&‘ :
\k‘o\"‘ N
" Muscat

uuuuuu

Figures prOvided by Prof. Umln?4



Data collection started a few days ago
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IV. Muography of Tropical Cyclones

Olah AHEAD WS 2024
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Muon flux (m2 s srl)

IV. Muography of Tropical Cyclones

Tanaka et al. (2022) Sci. Rep. 12, 16710 https://doi.org/10.1038/s41598-022-20039-4
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IV. Muography of Typhoons

Tanaka et al. (2022) Sci. Rep. 12, 16710 https://doi.org/10.1038/s41598-022-20039-4

Scintillator-based MMOS of SMO . ‘ Tropopause
was applied to measure the muon flux ' i \
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Time-sequential Muographic Images
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T-1612 passed across the LOS of
SMO from South to North on
2016/09/03 — 2016/09/04

Angular dependent relative muon flux
increased consistently with the
passage of typhoon

High-resolutional Dynamic
Muography:

« Studying the
genesis and maintenance
of tropical cyclones

2 solid angle is planned to be covered
with MWPC-based tracking systems
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V. Summary

Possible applications of cosmic-ray muon muography in Earth Sciences:
- Volcanology
- Researching the geology of oceanic lithosphere

- Studying and monitoring of tropical cyclones

Thank you for your attention!

Supporters:

Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)
Integrated Program for the Next Generation Volcano Research

https://kazan-pj.bosai.go.jp/next-generation-volcano-pj-2019-jun . .
Contact information:

Joint Usage Research Project (JURP) from the ERI, University of Tokyo Laszl6 Olah

https://www.eri.u-tokyo.ac.jp/en/joint-usage-top/ .
olah.laszlo@wigner.hu

"INTENSE” H2020 MSCA RISE, GA No. 822185 in Horizon 2020 . ; o _ ; ;
from European Comission https://cordis.europa.eu/project/id/822185 https.//W|gner.hu/s/h|gh energy geophysms/mdex_eng.htmI

TKP2021-NKTA-10 and othe grants for instrument development
from National Research, Development and Innovation Office, Hungary
https://nkfih.gov.hu/english-nkfih

HUN-REN Welcome Home and Foreign Researcher Recruitment Programme KSZF-144/2023
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Back up slides
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A Unified Region Beneath the Active Craters

2021 - 30 June 2021 2021 - 31 July 2021 1 March 2021 - 31 A
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* The muographic images shows that the density increased
beneath the Minamidake crater and decreased beneath the
Showa crater after January 2022.
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» Figures 50-y shows that the conduits are unified beneath
the eastern part of Minamidake crater and Showa crater
and this unified volume might be slanted towards east.

* The seismic epicenters distributed beneath both craters
at shallow depths from September to December 2020 and
June to December 2021 (Japan Meteorological Agency,
2021) when densities increased across the region M and S,
respectively.

» Infrared thermal imaging revealed simultaneous
presence of geothermal areas in the eastern part of
Minamidake crater and Showa crater in October 2021 (Japan
Meteorological Agency, 2021), in February and October
2022 (Japan Meteorological Agency, 2022). The eruptive
activity has switched from Minamidake crater to Showa
crater in June 2023 (Japan Meteorological Agency, 2023).
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Plug Formation and Magma Drain-back Process

» Minamidake crater: The increasing trend in density is interpreted as plug formation due to magma rising. The decreasing trend is interpreted
as plug reduction due to recurrent eruptions.

» Showa crater: eruptions did not follow the density increase observed beneath Showa crater in January 2019 and in August 2021; however,
later the mass density decreased. It was interpreted that the uprising magma generated the plug underneath Showa crater. However, the gas
pressure mightn't be enough to trigger eruptions and non-solidified part of the plug drained-back

» The InSAR data support our current picture. The magma has recurrently risen and the plug was recurrently generated underneath both of the
craters. However, at Minamidake crater, sufficient gas was provided and as a result, the gas pressure has risen. Consequently, the ground
surface was significantly upheaved in the Minamidake crater region. On the other hand, at Showa crater, sufficient gas was not provided after
the plug formation underneath Showa crater, thus the ground surface was not significantly upheaved. On the contrary, in February 2023, from
the InNSAR data, there was an indication that the pressure underneath the generated magmatic plug increased underneath Showa crater,
inducing a significant uplift of the ground surface in the Showa crater region. Consequently eruption occurred at Showa crater.
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VI. Towards Short-term Eruption Forecasting
via Machine Learning of Muon Images

* Machine learning of consecutive daily muon images for predicting eruption on the next day
Y. Nomura et al. Scientific reports, 10, 5272, 2020, https://doi.org/10.1038/s41598-020-62342-y

« Convolutional neural networks can learn the hidden patterns
(originated from mass changes occurred beneath the crater) in the muon images

* Receiver Operating Characteristic (ROC) analysis to characterize forecasting performance

* Results of ROC analysis showed that CNN achieved a fair forecasting performance, e.g. Area Under the
Curve (AUC) of 0.761, for the erupting Minamidake crater
L. Oldh & H.K.M. Tanaka: Geophys. Mon. Ser., 270, 43-54, 2022, https://doi.org/10.1002/9781119722748.ch4
1 . :
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D. Varga et al.:

System Plan of SMO

Nucl. Instrum. and Meth. A
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* Numerical integration of zenith-angle and energy depedent spectra from

Density Imaging

» Density values are extracted for each angular bin (,,pixel”)
via comparing the modeled flux to the measured flux

minimal energies that required for muons the penetrate the volcanic edifice
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