

Influences of environmental noise in the Virgo detector Irene Fiori

AHEAD2020 Workshop on the Synergies between Astroparticle and Geoscience

European Gravitational Observatory - 4 and 5 March 2024

North End building (NEB)

West End building (WEB)

You are here

Central building (CEB)

while the the later

IS THREATH WARRING BY I. IS

The Virgo GW interferometer

- 3 km arms
- 10-10000 Hz range
- 7000 m³ Ultra High Vacuum system
- Seismic attenuation of Test Masses, 10¹² from a few Hz
- Absorbing baffles to catch Stray light beams

The Virgo environment

Environmental monitors

Several (~250) fast probes inside Virgo buildings

Virgo seismic sources

Sea, Earthquakes and Wind

SuperAttenuators

- One pre-isolation stage (inverted pendulum, 3 legs, 30mHz) and chain of 5 stage pendula
- Attenuation factor of 10¹² from a few Hz

Robustness:

[V.Boschi, P.Ruggi, E.Majorana - GWADW 2016]

Sea activity

Global Inverted Pendulum Control (GIPC) technique allows to keep the control even for very strong micro-seismic activity

Earthquakes

Control strategy (GIPC and reallocation of force to marionette stage) allow to survive distant EQ up to Magnitudo 6.5. Seismon alert

Wind (!)

Low duty cycle in windy days!

Wind \rightarrow Tilt of the ground below ~100 mHz: accelerometer sensors on SA top stage wrongly interpret it as acceleration and fail to apply the right correction

Wind noise - solutions?

Add tilt sensors to SA control:

- Extremely accurate tiltmeter needed ~nrad/√Hz @ 10mHz
- Beam-balance tiltmeter A.Allocca <u>VIR-0957A-20</u>, https://publications.cnr.it/doc/461738

LIGO solution: wind fence (LIGO-E1800261)

LIGO wind fence efficiency

Figure 22: Comparison between CFD Model and Prototype Wind Fence (Time Series)

A wind shield for Virgo - a conceptual design

R.Passaquieti VIR-0429A-22

The first Quiet CFD result !

- The CFD 3D model and 2D meshing (96875 nodes)
 - The flow of wind definitely climbs to the top of the building !!!

Magnetic noise

Magnetic couplings

Force on magnetic components in Virgo:

- Magnet actuators on mirror test masses, and along SuperAttenuators
- Faraday isolators (~1T permanent magnet) placed on suspended optical benches

Critical for the Einstein Telescope

Careful characterization of candidate sites is needed:

- Measure magnetic properties of soil
- Identify anthropogenic sources

Magnetic noise from methane gas pipes at Virgo

External magnetometers:

Spectrogram of V1:spectro_ENV_EXT_MAG_W_300_100_0_: start=1322783918.000000 (Sun Dec 5 23:58:20 2021 UTC)

Similar magnetic field (much magnified) is found radiated by Virgo arms vacuum pipes

Investigation tracked this noise to the PWM power generator of galvanic (anti-corrosion) currents into the methane gas pipes surrounding the site

Working hypothesis - Telluric currents flow in the soil and also into Virgo arms vacuum pipes

Trains noise

Observed magnetic transients site-wide Investigation tracked it to railway lines, at about 2 km from Virgo site.

Trains noise - how is it produced?

Noise from electrified railways is very well known disturbance for magnetotelluric measurements (Padua et al. <u>https://doi.org/10.1186/BF03353047</u>)

Possible mechanisms:

- Large current (~1kA) flow in the loop between the overhead power line and the rail
- Current leakage propagates through the soil and radiates magnetic fields
- Also, induction from the current loop (... but fast decay with distance)
- How deep in the ground? Crucial issue for future underground laboratories, like the Einstein Telescope.

Fast glitches - when trains are crossing powering substations (every ~20 km) or when pantographs have bad contact with the overhead powerline (sparks)

Butterfly shaped patterns - due to variable power surging by the engine when the train accelerates or decelerates.

F. Paoletti - ET XIII symposium Cagliari - <u>ET-0163A-23</u>

Final remarks

- Natural and anthropogenic noises have some impact on Virgo sensitivity and duty cycle
- Noises from the detector site infrastructure (not in this talk) play a major role !!
- Experience with Virgo and present GW detectors provides important lessons for the future detectors sites